Qualifying Exam Syllabus Proposal

Kirill Paramonov

July 28, 2015

Exam Committee

Committee Chairperson:
Prof. Monica Vazirani
Committee Members:
Prof. Dan Romik
Assoc. Fu Liu
Prof. Greg Kuperberg
Prof. Francisco J. Samaniego

Exam Logistics

Date:

Thursday September 3, 2015
Time:
11AM-2PM
Location:
MSB 3106

1 Proposed Research Talk

1.1 The Catalan numbers and q-analogues.

A lattice path is a sequence of North $N(0,1)$ and East $E(1,0)$ steps in the first quadrant of the $x y$-plane, starting from the origin $(0,0)$ and ending at say (n, m). We let $L_{n, m}$ denote the set of all such paths, and $L_{n, m}^{+}$the subset of $L_{n, m}$ consisting of paths which never go below the line $y=\frac{m}{n} x$. A rational Dyck path is an element of $L_{n, m}^{+}$for some n, m.
Let $C_{n, m}=\frac{1}{n+m}\binom{n+m}{n}$ denote the rational Catalan number. For coprime n and $m, C_{n, m}$ also counts the number of elements in $L_{n, m}^{+}$. For the majority of the talk we will only be interested in the special case $m=n+1$, so that $C_{n, n+1}=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the usual nth Catalan number.
There is a useful recursive relation between Catalan numbers:

$$
\begin{equation*}
C_{n}=\sum_{k=1}^{n} C_{k-1} C_{n-k}, \quad n \geq 1 \tag{1}
\end{equation*}
$$

Given $\pi \in L_{n, m}^{+}$, let σ be the 0,1 -string resulting from the following algorithm. First initialize σ to the empty string. Next start at $(0,0)$, move along π and add a 0 to the end of $\sigma(\pi)$ every time a N step is encountered, and add a 1 to the end of $\sigma(\pi)$ every time an E step is encountered. We call the transformation of π to σ or its inverse the coding of π or σ. Denote the major index statistic of the string σ to be

$$
\operatorname{maj}(\sigma)=\sum_{i: \sigma_{i}>\sigma_{i+1}} i
$$

Now let $a_{i}(\pi)$ denote the number of complete squares, in the i th row from the bottom of π, which are to the right of π and to the left of the line $y=\frac{m}{n} x$. We set $\operatorname{area}(\pi)=\sum_{i} a_{i}(\pi)$.

In sections 1.2-1.7, we will be looking at q - and q, t - generalizations of the usual Catalan numbers C_{n}. First, we define q - analogues for binomial coefficients. Let

$$
[n]=\frac{q^{n}-1}{q-1}, \quad[n]!=[1][2] \ldots[n], \quad\left[\begin{array}{c}
n+m \\
m
\end{array}\right]=\frac{[n+m]!}{[n]![m]!}
$$

The first natural q-analogue of C_{n} is given by the following theorem:

Theorem 1.1 (MacMahon[Mac60])

$$
\sum_{\pi \in L_{n, n}^{+}} q^{\operatorname{maj}(\sigma(\pi))}=\frac{1}{[n+1]}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]
$$

The second natural q-analogue was studied by Carlitz and Riordan [CR64]. They define

$$
C_{n}(q)=\sum_{\pi \in L_{n, n}^{+}} q^{\operatorname{area}(\pi)}
$$

Proposition 1.2

$$
C_{n}(q)=\sum_{k=1}^{n} q^{k-1} C_{k}(q) C_{n-k}(q), \quad n \geq 1
$$

1.2 Hilbert and Frobenius series.

Given any subspace $W \subseteq \mathbb{C}\left[X_{n}, Y_{n}\right]=\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, we define the bigraded Hilbert series of W as

$$
\mathcal{H}(W ; q, t)=\sum_{i, j \geq 0} t^{i} q^{j} \operatorname{dim}\left(W^{(i, j)}\right)
$$

where the subspaces $W^{(i, j)}$ consist of those elements of W of bi-homogeneous degree i in the x variables and j in the y variables. Also, define the diagonal action of S_{n} on W by

$$
\sigma f=f\left(x_{\sigma_{1}}, \ldots x_{\sigma_{n}}, y_{\sigma_{1}}, \ldots y_{\sigma_{n}}\right), \quad \sigma \in S_{n}, \quad f \in W
$$

Irreducible characters of S_{n} are in one-to-one correspondence with partitions $\lambda \in \operatorname{Par}(n)$. We denote them as χ^{λ}.

The diagonal action fixes the subspaces $W^{(i, j)}$, so we can define the bigraded Frobenius series of W as

$$
\mathcal{F}(W ; q, t)=\sum_{i, j \geq 0} t^{i} q^{j} \sum_{\lambda \vdash n} s_{\lambda} \operatorname{Mult}\left(\chi^{\lambda}, W^{(i, j)}\right) .
$$

Similarly, let W^{ε} be the subspace of alternating elements in W, and

$$
\mathcal{H}\left(W^{\varepsilon} ; q, t\right)=\sum_{i, j \geq 0} t^{i} q^{j} \operatorname{dim}\left(W^{\varepsilon(i, j)}\right)
$$

It's a known fact that

$$
\mathcal{H}\left(W^{\varepsilon} ; q, t\right)=\left\langle\mathcal{F}(W ; q, t), s_{1^{n}}\right\rangle
$$

1.3 Partitions.

A partition λ is a nonincreasing finite sequence $\lambda_{1} \geq \lambda_{2} \geq \ldots$ of positive integers. We call each λ_{i} a part. Let $l(\lambda)$ denote the number of parts and $|\lambda|=\sum_{i} \lambda_{i}$ the sum of the parts. If λ is a partition and $|\lambda|=n$, we also say $\lambda \vdash n$ or $\lambda \in \operatorname{Par}(n)$. The Ferrers graph of λ is an array of unit squares, called cells, with λ_{i} cells in the i th row, with the first cell in each row left-justified. We define the conjugate partition, λ^{\prime} as the partition of those Ferrers graph is obtained from λ by reflecting across the diagonal $x=y$. For example, $(i, j) \in \lambda$ refers to a cell with (column, row) coordinates (i, j), with the lower left-hand-cell of λ having coordinates $(1,1)$. The notation $x \in \lambda$ means x is a cell in λ.

Two simple functions on partitions we will often use are

$$
n(\lambda)=\sum_{i}(i-1) \lambda_{i}=\sum_{i}\binom{\lambda_{i}^{\prime}}{2}, \quad z_{\lambda}=\prod_{i} i^{n_{i}} n_{i}!,
$$

where $n_{i}=n_{i}(\lambda)$ is the number of parts of λ equal to i.

1.4 The space of diagonal harmonics.

Let $p_{h, k}\left[X_{n}, Y_{n}\right]=\sum_{i=1}^{n} x_{i}^{h} y_{i}^{k}, h, k \in \mathbb{Z}_{\geq 0}$ denote the "polarized power sum". It is known that the set $\left\{p_{h, k}\left[X_{n}, Y_{n}\right], h, k \in \mathbb{Z}_{\geq 0}\right\}$ generate $\mathbb{C}\left[X_{n}, Y_{n}\right]^{S_{n}}$, the ring of invariants under the diagonal action. We define the quotient ring $D R_{n}$ of diagonal covariants by

$$
D R_{n}=\mathbb{C}\left[X_{n}, Y_{n}\right] /\left\langle\sum_{i=1}^{n} x_{i}^{h} y_{i}^{k}, \forall h+k>0\right\rangle
$$

We also define the space of diagonal harmonics $D H_{n}$ by

$$
D H_{n}=\left\{f \in \mathbb{C}\left[X_{n}, Y_{n}\right]: \sum_{i=1}^{n} \frac{\partial^{h}}{x_{i}^{h}} \frac{\partial^{k}}{y_{i}^{k}} f=0, \forall h+k>0\right\}
$$

The space of diagonal harmonics $D H_{n}$ is a finite dimensional vector space which is isomorphic to $D R_{n}$ as an S_{n} module. The dimension of these spaces turns out to be $(n+1)^{n-1}$ ([Hai02]).

Given a cell $x \in \lambda$, let the arm $a=a(x)$, leg $l=l(x)$, coarm $a^{\prime}=a^{\prime}(x)$, and coleg $l^{\prime}=l^{\prime}(x)$ be the number of cells strictly between x and the border of λ in the E, S, W and N directions, respectively.

For $\mu \vdash n$ define,

$$
\begin{gathered}
M=(1-q)(1-t), \quad B_{\mu}=\sum_{x \in \mu} q^{a^{\prime}} t^{l^{\prime}}, \quad \Pi_{\mu}=\prod_{x \in \mu, x \neq(1,1)}\left(1-q^{a^{\prime}} t^{l^{\prime}}\right) \\
n(\mu)=\sum_{i}(i-1) \mu_{i}, \quad T_{\mu}=t^{n(\mu)} q^{n\left(\mu^{\prime}\right)}, \quad w_{\mu}=\prod_{x \in \mu}\left(q^{a}-t^{l+1}\right)\left(t^{l}-q^{a+1}\right)
\end{gathered}
$$

Define $\tilde{K}_{\lambda, \mu}(q, t)=t^{n(\mu)} K_{\lambda, \mu}(q, 1 / t)$, where $K_{\lambda, \mu}(q, t)$ are known as the q, t-Kostka polynomials. Then the "modified Macdonald polynomial" $\tilde{H}_{\mu}=\tilde{H}_{\mu}[X ; q, t]$ can be defined as

$$
\tilde{H}_{\mu}=\sum_{\lambda \vdash n} \tilde{K}_{\lambda, \mu}(q, t) s_{\lambda} .
$$

Theorem 1.3 (Haiman, [Hai02]).

$$
\mathcal{F}\left(D H_{n} ; q, t\right)=\sum_{\mu \vdash n} \frac{T_{\mu} M \tilde{H}_{\mu} \Pi_{\mu} B_{\mu}}{w_{\mu}}
$$

1.5 Algebraic definition of q, t-Catalan numbers.

On the space of symmetric functions $\Lambda[X]$, define the Hall inner product by

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle=z_{\lambda} \chi(\lambda=\mu), \quad\left\langle s_{\lambda}, s_{\mu}\right\rangle=\chi(\lambda=\mu)
$$

Then let

$$
C_{n}(q, t)=\left\langle\mathcal{F}\left(D H_{n} ; q, t\right), s_{1^{n}}\right\rangle=\mathcal{H}\left(D H_{n}^{\varepsilon} ; q, t\right)
$$

Open problem 1.4 Find a combinatorial description of the polynomials $\left\langle\mathcal{F}\left(D H_{n} ; q, t\right), s_{\lambda}\right\rangle$ for general λ.
From Theorem 1.4 and the fact that $\left\langle\tilde{H}_{\mu}, s_{1^{n}}\right\rangle=T_{\mu}$, we have

$$
C_{n}(q, t)=\sum_{\mu \vdash n} \frac{T_{\mu}^{2} M \Pi_{\mu} B_{\mu}}{w_{\mu}} .
$$

Garsia and Haiman ([GH96]) proved that

$$
\begin{aligned}
C_{n}(q, 1)=C_{n}(q) & =\sum_{\pi \in L_{n, n}^{+}} q^{\operatorname{area}(\pi)} \\
q^{\binom{n}{2}} C_{n}(q, 1 / q) & =\frac{1}{[n+1]}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]
\end{aligned}
$$

which shows that both the Carlitz-Riordan and MacMahon q-Catalan numbers are special cases of $C_{n}(q, t)$. That is why $C_{n}(q, t)$ is referred to as q, t-Catalan sequence.

1.6 Bounce statistic. Combinatorial description of q, t - Catalan numbers.

Given $\pi \in L_{n, n}^{+}$, define the bounce path of π to be the path described by the following algorithm. Start at $(0,0)$ and travel North along π until you encounter the beginning of an E step. Then turn East and travel straight until you hit the diagonal $y=x$. Then turn North and travel straight until you encounter again the beginning of an E step of π, then turn East and travel to the diagonal, etc. Continue until you arrive at (n, n). Let $(0,0),\left(j_{1}, j_{1}\right),\left(j_{2}, j_{2}\right), \ldots,\left(j_{b-1}, j_{b-1}\right),\left(j_{b}, j_{b}\right)=(n, n)$ are the points where the bouncing path touches the line $y=x$. Then define the bounce statistic bounce (π) to be the sum

$$
\operatorname{bounce}(\pi)=\sum_{i=1}^{b-1} n-j_{i}
$$

Let

$$
F_{n}(q, t)=\sum_{\pi \in L_{n, n}^{+}} q^{\operatorname{area}(\pi)} t^{\mathrm{bounce}(\pi)}
$$

Theorem 1.5 (Garsia, Haglund, [GH01],[GH02])

$$
C_{n}(q, t)=F_{n}(q, t)
$$

The proof of Theorem 1.6 is based on a recursive structure underlying $F_{n}(q, t)$. For example, it can be proved combinatorially that

$$
F_{n}(q, t)=\sum_{i=1}^{b} \sum_{\alpha} t^{\sum_{i=2}^{b}(i-1) \alpha_{i}} q^{\sum_{i=1}^{b}\binom{\alpha_{i}}{2}} \prod_{i=1}^{b-1}\left[\begin{array}{c}
\alpha_{i}+\alpha_{i+1}-1 \\
\alpha_{i+1}
\end{array}\right]
$$

where the inner sum is over all compositions α of n into b positive integers.

1.7 The symmetry problem and the dinv statistic.

From it's algebraic definition it's easy to show $C_{n}(q, t)=C_{n}(t, q)$. Thus we have
Corollary 1.6

$$
\sum_{\pi \in L_{n, n}^{+}} q^{\operatorname{area}(\pi)} t^{\text {bounce }(\pi)}=\sum_{\pi \in L_{n, n}^{+}} q^{\operatorname{bounce}(\pi)} t^{\operatorname{area}(\pi)}
$$

At present there is no other known way to prove this equality other than as a corollary of Theorem 1.6.
Open problem 1.7 Prove Corollary 1.7 by exhibiting a bijection on Dyck paths which interchanges area and bounce.

There is another pair of statistics for the q, t-Catalan discovered by M.Haiman. It involves pairing area with a different statistic called dinv, for "diagonal inversion" or "d-inversion". It is defined, with a_{i} the length of the i th row from the bottom, as follows. For $\pi \in L_{n, n}^{+}$, let

$$
\operatorname{dinv}(\pi)=\left|\left\{(i, j): 1 \leq i<j \leq n \quad a_{i}=a_{j}\right\}\right|+\left|\left\{(i, j): 1 \leq i<j \leq n \quad a_{i}=a_{j}+1\right\}\right|
$$

Or, equivalently, let $\lambda(\pi)$ denote the partition above π but inside the $n \times n$ square. Then

$$
\operatorname{dinv}(\pi)=|\{s \in \lambda(\pi): \operatorname{leg}(s) \leq \operatorname{arm}(s) \leq \operatorname{leg}(s)+1\}|
$$

Theorem 1.8

$$
\sum_{\pi \in L_{n, n}^{+}} q^{\operatorname{dinv}(\pi)} t^{\operatorname{area}(\pi)}=\sum_{\pi \in L_{n, n}^{+}} q^{\operatorname{area}(\pi)} t^{\operatorname{bounce}(\pi)}
$$

There's a combinatorial proof of Theorem 1.9 that describes a bijective map $\zeta: L_{n, n}^{+} \rightarrow L_{n, n}^{+}$such that

$$
\operatorname{dinv}(\pi)=\operatorname{area}(\zeta(\pi)), \quad \operatorname{area}(\pi)=\operatorname{bounce}(\zeta(\pi))
$$

1.8 Rational Dyck paths.

Define the hook length of the cell $x \in \lambda$ as $\mathrm{hl}(x)=\operatorname{arm}(x)+\operatorname{leg}(x)+1$. An (a, b)-core is a partition λ such that for any $x \in \lambda$, the hook length of x is not equal to a or b. We define the set of (a, b)-cores as $\mathcal{C}_{a, b}$.

Suppose $(a, b)=1$. Then there is a bijection between (a, b)-cores and rational Dyck paths from $L_{a, b}^{+}$ called Anderson's bijection.

The hook filling of the boxes in the square lattice is obtained by filling the box with lower-right lattice point $(b, 0)$ with the number $-a b$ and increasing by a for every one box west and increasing by b for every one box north. A box is above the main diagonal if and only if the corresponding hook is positive. The positive hooks of $\pi \in L_{a, b}^{+}$are the numbers in the hook filling below the path but greater than zero. The number of positive hooks is exactly the area of π. We denote $c(\pi)$ the (a, b)-core corresponding to π under Anderson bijection: the hook lengths of the boxes in the first column of $c(\pi)$, its leading hooks, are precisely the positive hooks of π.

It's often easier to work with (a, b)-cores instead of rational Dyck paths.
Let κ be an a-core partition. Consider the hook lengths of the boxes in the first column of κ. Find the largest hook length of each residue modulo a. The a-rows of κ are the rows corresponding to these hook lengths. The a-boundary of κ consists of all boxes in it's Young diagram with hook length less than a.

Let κ be an (a, b)-core partition. The skew length of κ, denoted $\operatorname{sl}(\kappa)$, is the number of boxes simultaneously located in the a-rows and the b-boundary of κ.

An interesting property of $\operatorname{sl}(\kappa)$ is that it is independent of the ordering of a and b ([CDH15]).
The co-skew length of an (a, b)-core κ is

$$
\operatorname{sl}^{\prime}(\kappa)=\frac{(a-1)(b-1)}{2}-\operatorname{sl}(\kappa)
$$

The rank of π, denoted $\operatorname{rk}(\pi)$ is the number of rows in $\lambda(\pi)$.
The analogue of the dinv statistic on rational Dyck paths can be defined as

$$
\operatorname{dinv}(\pi)=\left|\left\{s \in \lambda(\pi): \frac{\operatorname{arm}(s)}{\operatorname{leg}(s)+1} \leq \frac{b}{a}<\frac{\operatorname{arm}(s)+1}{\operatorname{leg}(s)}\right\}\right|
$$

Open problem 1.9 Find an analogue of the bounce statistic on rational Dyck paths.
Conjecture 1.10 Let a and b relatively prime positive integers. Then

$$
\frac{1}{[a+b]}\left[\begin{array}{c}
a+b \\
a
\end{array}\right]=\sum_{\kappa \in \mathcal{C}_{a, b}} q^{\mathrm{sl}(\kappa)+\operatorname{rk}(\kappa)}
$$

Define the rational q, t-Catalan numbers as

$$
F_{a, b}(q, t)=\sum_{\kappa \in \mathcal{C}_{a, b}} q^{\mathrm{rk}(\kappa)} t^{\mathrm{sl}^{\prime}(\kappa)}
$$

Conjecture 1.11

$$
\sum_{\kappa \in \mathcal{C}_{a, b}} q^{\mathrm{rk}(\kappa)} t^{\mathrm{sl}^{\prime}(\kappa)}=\sum_{\kappa \in \mathcal{C}_{a, b}} q^{\mathrm{sl}^{\prime}(\kappa)} t^{\mathrm{rk}(\kappa)}
$$

1.9ζ - map on rational Dyck paths.

For $\pi \in L_{a, b}^{+}$, let $\nu(\pi)=\left(\nu_{1}, \ldots, \nu_{a}\right)$ be the partition that has parts equal to the number of b-boundary boxes in the a-rows of $c(\pi)$.

Define $\zeta(\pi)$ to be the (a, b)-Dyck path such that $\lambda(\zeta(\pi))=\nu(\pi)$.
Proposition 1.12

$$
\operatorname{sl}^{\prime}(\pi)=\operatorname{area}(\zeta(\pi)), \quad \operatorname{dinv}(\pi)=\operatorname{area}(\zeta(\pi))
$$

Corollary 1.13

$$
\operatorname{sl}^{\prime}(\pi)=\operatorname{dinv}(\pi)
$$

Open problem 1.14 Prove that ζ is bijective.

2 Topics (with references)

1. Combinatorics.

- Enumerative Combinatorics. ([EC1], [AKS13])
- Cycles and inversions. Descents. Partitions and q-binomial coefficients. Partition identities. The twelvefold way.
- Inclusion-exclusion formula. Permutations with restricted position. Involutions.
- Posets. Lattices. Distributive lattices. Incidence algebras. Moebius inversion formula. Promotion and evacuation.
- Markov chains on linear extensions.
- Symmetric Functions. ([EC2], Ch.7)
- Monomial, elementary, complete homogeneous, power sum symmetric functions. An involution. A scalar product.
- Schur functions: combinatorial definition, classical definition.
- Semi-standard Young tableaux. The RSK algorithm.
- The Jacobi-Trudi identity. The Murnaghan-Nakayama rule. The Littlewood-Richardson Rule.
- Algebraic Combinatorics. ([EC2], [Hag08])
- The characters of the Symmetric group.
- Hilbert series, Frobenius series.
- Macdonald Polynomials and the Space of Diagonal harmonics.
- q, t - Catalan numbers. ([Hag08], Ch.2,3)
- Statistics on Dyck paths: Bounce statistic, Dinv statistic. The Zeta map on rational Dyck paths.
- Definition of q, t - Catalan numbers.
- Special values $t=1$ and $t=1 / q$.
- The Symmetry Problem.
- Enumeration of Integer Points in Polyhedra. ([Ba08])
- The algebra of polyhedra. Linear transformations. Polarity. Tangent cones and decompositions modulo polyhedra with lines. Open polyhedra.
- The exponential valuation. Lattices, bases and parallelepipeds. The Minkowski Convex Body theorem.
- Exponential sums and generating functions. Totally unimodular polytopes. Decomposing a rational cone into unimodular cones. Efficient counting of integer points in rational polytopes.
- The polynomial behavior of the number of integer points in polytopes. A valuation on rational cones.

2. Algebra and Representation Theory. ([DF04], [Bur65])

- Introduction to Group Theory. ([DF04], Ch.1-6)
- Basic Groups. Subgroups. Quotient groups and Homomorphisms.
- Group actions. Sylow's theorem.
- Direct and semidirect products. The fundamental theorem of finitely generated Abelian groups.
- p-Groups, nilpotent groups and solvable groups.
- Representation Theory of Rings with Identity. ([DF04], [Bur65])
- Rings, Modules, Vector Spaces. Ring homomorphisms, quotient rings and ideals. Module homomorphisms and quotient modules. The matrix of linear transformation. Direct sum.
- Representation modules. The regular representation.
- The principle indecomposable representations. The radical of a ring. Semisimple rings. The Wedderburn structure theorems for semisimple rings.
- Intertwining numbers. Multiplicities of the indecomposable components in the regular representation.
- Representation Theory of Finite Groups and Theory of Characters. ([Bur65])
- The group algebra. Semisimplicity of the group algebra. The center of the group algebra. The number of inequivalent irreducible representations.
- Orthogonal relations on the irreducible characters of the group. Module of characters over the integers, symmetric bilinear form on characters.
- The Kronecker product of two representations. Induced representations and induced characters.
- Normal subgroups and the character table. Representations of cyclic groups and abelian groups.

3. Complex Analysis. ([SS03])

- Cauchy's Theorem and Applications.
- Meromorphic Functions and the Logarithm.
- The Fourier Transform.
- Entire Functions.
- The Gamma and Zeta Functions.

4. Probability Theory. ([Dur05])

- Laws of Large Numbers.
- Central Limit Theorems.
- Random Walks.
- Martingales.
- Markov Chains.
- Brownian Motion.

5. Real Analysis. ([HN01])

- Banach Spaces.
- Hilbert Spaces.
- Fourier Series.
- Distributions and the Fourier Transform.
- Measure Theory and Function Spaces.

3 References

[Hag08] J. Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics (With an Appendix on the Combinatorics of Macdonald Polynomials), American Mathematical Society, Providence RI, 2008.
[Mac60] P.A. MacMahon, Combinatory analysis, Two volumes (bound as one), Chelsea Publishing Co., New York, 1960.
[CR64] L. Carlitz and J. Riordan, Two element lattice permutation numbers and their q-generalization, Duke J. Math. 31 (1964), 371-388.
[Hai02] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), 371-407.
[GH96] A. M. Garsia and M. Haiman, A remarkable q, t-Catalan sequence and q-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191-244.
[GH01] A. M. Garsia and J. Haglund, A positivity result in the theory of Macdonald polynomials, Proc. Nat. Acad. Sci. U.S.A. 98 (2001), 4313-4316.
[GH02] A. M. Garsia and J. Haglund, A proof of the q,t-Catalan positivity conjecture, Discrete Math. 256 (2002), 677-717.
[Hag03] J. Haglund, Conjectured statistics for the q,t-Catalan numbers, Adv. Math. 175 (2003), no. 2, 319-334.
[EC1] R. P. Stanley, Enumerative Combinatorics, vol.1, Cambridge University Press, 2 edition, 2011.
[EC2] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, 1999.
[AKS13] Arvind Ayyer, Steven Klee, Anne Schilling. Combinatorial Markov Chains on Linear Extensions, 2013.
[Ba08] Alexander Barvinok. Integer Points in Polyhedra, European Mathematical Society, 2008.
[DF04] David Dummit and Richard Foote. Abstract Algebra, John Wiley and Sons Inc, Hoboken NJ, third edition, 2004.
[Bur65] Martin Burrow. Representation theory of Finite Groups, Academic Press, 1965.
[HN01] John K. Hunter and Bruno Nachtergaele. Applied Analysis, World Scientific Publishing Co., Hackensack NJ, 2001.
[Dur05] Rick Durrett. Probability: Theory and Examples, Thomson Brooks/Cole, Third edition, 2005.
[SS03] Elias M. Stein and Rami Shakarachi. Complex Analysis, Princeton University Press, Princeton NJ, 2003.
[CDH15] Cesar Ceballos, Tom Denton, Christopher R.H. Hanusa. Combinatorics of the Zeta Map on Rational Dyck Paths, 2015.

