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1 Proposed Research Talk

1.1 The Catalan numbers and g-analogues.

A lattice path is a sequence of North N(0,1) and East E(1,0) steps in the first quadrant of the zy-plane,
starting from the origin (0,0) and ending at say (n,m). We let L, ,, denote the set of all such paths, and
Lim the subset of L, ,,, consisting of paths which never go below the line y = ">x. A rational Dyck path is
an element of L} for some n,m.

Let Cpom = ﬁ("‘:m) denote the rational Catalan number. For coprime n and m, C,, ,, also counts the
number of elements in Lim. For the majority of the talk we will only be interested in the special case
m=n+1, so that Cy, 11 = C,, = %ﬂ (271’) is the usual nth Catalan number.
There is a useful recursive relation between Catalan numbers:
n
Cn = ZCk,lCn,k, n Z 1. (1)
k=1

Given w € Ljym, let o be the 0, 1-string resulting from the following algorithm. First initialize o to the
empty string. Next start at (0,0), move along m and add a 0 to the end of o(w) every time a N step is
encountered, and add a 1 to the end of o(7) every time an E step is encountered. We call the transformation

of m to o or its inverse the coding of m or o. Denote the major index statistic of the string o to be

maj(c) = Z i

10 >0541

Now let a;(7) denote the number of complete squares, in the ith row from the bottom of 7, which are to the
right of 7 and to the left of the line y = ™. We set area(r) = ), a;(7).

In sections 1.2-1.7, we will be looking at ¢- and g, t- generalizations of the usual Catalan numbers C,,.
First, we define ¢- analogues for binomial coefficients. Let

= T = )., [

n+m] _ [n+m]!
q—1’

m | [n)l[m]!’

The first natural g-analogue of C,, is given by the following theorem:



Theorem 1.1 (MacMahon[Mac60])

S graite) L |2n
[n+1]|n
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The second natural g-analogue was studied by Carlitz and Riordan [CR64]. They define

Cn(q)z Z qarea(w).

m€LY ,

Proposition 1.2

n

Colg) =D " 'Ch(q)Crr(q), n>1.
k=1

1.2 Hilbert and Frobenius series.

Given any subspace W C C[X,,,Y,] = Clz1,...,Zn, Y1,---,Yn], we define the bigraded Hilbert series of W
as
H(Wiq,t) = > t'gdim(W7)),
i,§>0
where the subspaces W) consist of those elements of W of bi-homogeneous degree 7 in the z variables and
j in the y variables. Also, define the diagonal action of S, on W by

Jf:f(xtfn“’xanvycrlw“yan)’ Jesna fGW

Irreducible characters of S,, are in one-to-one correspondence with partitions A € Par(n). We denote
them as ™.
The diagonal action fixes the subspaces W(9), so we can define the bigraded Frobenius series of W as

FWigt) = 3 g Y saMult(x, W),
4,j20 Abn

Similarly, let W¢ be the subspace of alternating elements in W, and

H(Wq,t) = Y g dim(W=07)),

4,520

It’s a known fact that
HWE;q,t) = (F(W;q,t),81n) .

1.3 Partitions.

A partition A is a nonincreasing finite sequence A; > Ao > ... of positive integers. We call each \; a part.
Let I(X\) denote the number of parts and [A| = >, \; the sum of the parts. If  is a partition and |A\| = n, we
also say A n or A € Par(n). The Ferrers graph of X is an array of unit squares, called cells, with A; cells in
the ith row, with the first cell in each row left-justified. We define the conjugate partition, A" as the partition
of those Ferrers graph is obtained from A by reflecting across the diagonal = y. For example, (i,7) € A
refers to a cell with (column, row) coordinates (7,7), with the lower left-hand-cell of A having coordinates
(1,1). The notation x € A means z is a cell in .
Two simple functions on partitions we will often use are

n(\) = Z(z —1)\ = Z (2) Zn = Hz"n'

where n; = n;(A) is the number of parts of A equal to 7.



1.4 The space of diagonal harmonics.

Let ppi[Xn,Ys] = i, xhy¥, h,k € Zso denote the "polarized power sum”. It is known that the set
{Phk[Xn, Yy], b,k € Z>o} generate C[X,,, Y,,]%», the ring of invariants under the diagonal action. We define
the quotient ring DR,, of diagonal covariants by

Dwacanl<§:xwah+k>o>

We also define the space of diagonal harmonics DH,, by
ol ok
zmuz{fequn]E:h S f =0h+k>0}.
Y;
i=1

The space of diagonal harmonics DH,, is a finite dimensional vector space which is isomorphic to DR,, as
an S,, module. The dimension of these spaces turns out to be (n + 1)"~! ([Hai02]).

Given a cell z € A, let the arm a = a(x), leg | = I(x), coarm o' = a/(z), and coleg I’ = I'(x) be the
number of cells strictly between x and the border of X in the E, S, W and N directions, respectively.

For p = n define,

M=Q1-q(1—t), B,=Y ¢t MW,= [ @-¢t")
TEN zEp,r#(1,1)
n(p) = Z(i D, Tpo= W)y, = H(qa g goty,
i TEW

Define K ,(q,t) = t"W Ky .(q,1/t), where Ky ,.(q,t) are known as the g, t-Kostka polynomials. Then

the "modified Macdonald polynomial” H, = H 1[X; q,t] can be defined as
H, = Z K (g, t)sx

AFn
Theorem 1.3 (Haiman, [Hai02]).

T,MH,II,B
F(DHy;q,t) = Z%
pEn s

1.5 Algebraic definition of ¢,-Catalan numbers.
On the space of symmetric functions A[X], define the Hall inner product by

(Paspu) = 2ax(A =), (sx;80) = x(A = p).
Then let
Cnlq,t) = (F(DHp;q,t),517) = H(DHy; ¢, ).
Open problem 1.4 Find a combinatorial description of the polynomials (F(DH,;q,t),sx) for general .
From Theorem 1.4 and the fact that ([, s1.) = T},, we have

ZﬂMHB
pkEn
Garsia and Haiman ([GH96]) proved that

Cul(g,1) = Cula) = > q**™,
WGLﬁn
OCg.1/g) = —— [
q\?/Cn(q,1/q) il n
which shows that both the Carlitz-Riordan and MacMahon g-Catalan numbers are special cases of C),(q,t).
That is why C,,(q,t) is referred to as g, t-Catalan sequence.




1.6 Bounce statistic. Combinatorial description of ¢,7- Catalan numbers.

Given 7 € L:,n, define the bounce path of m to be the path described by the following algorithm. Start at

(0,0) and travel North along 7 until you encounter the beginning of an E step. Then turn East and travel
straight until you hit the diagonal y = . Then turn North and travel straight until you encounter again
the beginning of an F step of 7, then turn East and travel to the diagonal, etc. Continue until you arrive
at (n,n). Let (0,0), (41,41), (J2,J2),- -+, (Gb—1,Jb—1), (Jb, Jb) = (n,n) are the points where the bouncing path
touches the line y = x. Then define the bounce statistic bounce(w) to be the sum

b—1

bounce(r) = Z n— j.

1=1
Let
Fn(q,t) = Z qarea(ﬂ)tbounce(ﬂ—).

T€LL
Theorem 1.5 (Garsia, Haglund, [GHO1],[GH02])

The proof of Theorem 1.6 is based on a recursive structure underlying F,(g,t). For example, it can be
proved combinatorially that

b b—1
§ § b, (i—1a; b(% o; + o1 — 1
Fn(%t) - 2=z lq21:1 ( 2) | [ [ a4:1 }7
i=1 « i i

where the inner sum is over all compositions « of n into b positive integers.

1.7 The symmetry problem and the dinv statistic.
From it’s algebraic definition it’s easy to show C,,(q,t) = Cy(t,q). Thus we have

Corollary 1.6
Z qarea(ﬂ)tbounce(ﬂ'): Z qbounce(ﬂ)tarea(ﬂ').

T€LL n T€LY o
At present there is no other known way to prove this equality other than as a corollary of Theorem 1.6.

Open problem 1.7 Prove Corollary 1.7 by exhibiting a bijection on Dyck paths which interchanges area
and bounce.

There is another pair of statistics for the ¢, t-Catalan discovered by M.Haiman. It involves pairing area
with a different statistic called dinv, for ”diagonal inversion” or ”d-inversion”. It is defined, with a; the
length of the ith row from the bottom, as follows. For m € LT | let

n,n’
dinv(m) = [{(4,j): 1 <i<j<n a=a;}|+[{({,j):1<i<j<n a; =a;+1}|
Or, equivalently, let A(7) denote the partition above 7 but inside the n x n square. Then

dinv(m) = [{s € A(7) : leg(s) < arm(s) < leg(s) + 1}].

Theorem 1.8 4
Z qdmv(ﬂ')tarea(ﬂ): Z qarea(ﬂ')tbounce(ﬂ)'

T€Ly LIS
There’s a combinatorial proof of Theorem 1.9 that describes a bijective map ¢ : L;} , — L;},, such that

dinv(7w) = area(¢(w)), area(m) = bounce({(r)).



1.8 Rational Dyck paths.

Define the hook length of the cell z € A as hl(x) = arm(x) + leg(x) + 1. An (a,b)-core is a partition A such
that for any = € A, the hook length of z is not equal to a or b. We define the set of (a,b)-cores as Cq .

Suppose (a,b) = 1. Then there is a bijection between (a,b)-cores and rational Dyck paths from L;b
called Anderson’s bijection.

The hook filling of the boxes in the square lattice is obtained by filling the box with lower-right lattice
point (b,0) with the number —ab and increasing by a for every one box west and increasing by b for every
one box north. A box is above the main diagonal if and only if the corresponding hook is positive. The
positive hooks of m € L+ p are the numbers in the hook filling below the path but greater than zero. The
number of positive hooks is exactly the area of m. We denote ¢(7) the (a, b)-core corresponding to m under
Anderson bijection: the hook lengths of the boxes in the first column of ¢(r), its leading hooks, are precisely
the positive hooks of .

It’s often easier to work with (a,b)-cores instead of rational Dyck paths.

Let k be an a-core partition. Consider the hook lengths of the boxes in the first column of k. Find the
largest hook length of each residue modulo a. The a-rows of k are the rows corresponding to these hook
lengths. The a-boundary of k consists of all boxes in it’s Young diagram with hook length less than a.

Let k be an (a, b)-core partition. The skew length of k, denoted sl(), is the number of boxes simultane-
ously located in the a-rows and the b-boundary of k.

An interesting property of sl(x) is that it is independent of the ordering of a and b ([CDH15]).

The co-skew length of an (a, b)-core k is

sl' (k) = W —sl(k).

The rank of 7, denoted rk(m) is the number of rows in A(w).
The analogue of the dinv statistic on rational Dyck paths can be defined as

dinv(m) = Hs € A(m) : arm(s) b amn(s) +1 1}‘

leg(s)+1 ~ a leg(s)

Open problem 1.9 Find an analogue of the bounce statistic on rational Dyck paths.
Conjecture 1.10 Let a and b relatively prime positive integers. Then

1 |:a + b] sl H)+rk(n)
§ q
[a+b]| a ot

Define the rational g, t-Catalan numbers as

a b q’ Z qu(n)tsl (n)
KEC,
Conjecture 1.11
k(r)gsl’ (k) _ rk(n
> a >
KECa b KE€Cab

1.9 (- map on rational Dyck paths.

For 7 € La p» let v(m) = (v1,...,v,) be the partition that has parts equal to the number of b-boundary boxes
in the a-rows of ¢(7).

Define ¢(7) to be the (a,b)-Dyck path such that A\({(x)) = v(n).

Proposition 1.12
sl'(r) = area(((w)), dinv(w) = area(¢(m)).

Corollary 1.13
sl'(7) = dinv(7).

Open problem 1.14 Prove that ¢ is bijective.



2 Topics (with references)
1. Combinatorics.

e Enumerative Combinatorics. ([EC1], [AKS13])
— Cycles and inversions. Descents. Partitions and g-binomial coefficients. Partition identities.
The twelvefold way.
— Inclusion-exclusion formula. Permutations with restricted position. Involutions.

— Posets. Lattices. Distributive lattices. Incidence algebras. Moebius inversion formula. Pro-
motion and evacuation.

— Markov chains on linear extensions.

Symmetric Functions. ([EC2], Ch.7)

— Monomial, elementary, complete homogeneous, power sum symmetric functions. An involu-
tion. A scalar product.

— Schur functions: combinatorial definition, classical definition.

— Semi-standard Young tableaux. The RSK algorithm.

— The Jacobi-Trudi identity. The Murnaghan-Nakayama rule. The Littlewood-Richardson
Rule.

Algebraic Combinatorics. ([EC2], [Hag08])

— The characters of the Symmetric group.
— Hilbert series, Frobenius series.
— Macdonald Polynomials and the Space of Diagonal harmonics.

g, t- Catalan numbers. ([Hag08], Ch.2,3)

— Statistics on Dyck paths: Bounce statistic, Dinv statistic. The Zeta map on rational Dyck
paths.

— Definition of g, - Catalan numbers.
— Special values t =1 and t = 1/q.
— The Symmetry Problem.

Enumeration of Integer Points in Polyhedra. ([Ba08])
— The algebra of polyhedra. Linear transformations. Polarity. Tangent cones and decomposi-
tions modulo polyhedra with lines. Open polyhedra.

— The exponential valuation. Lattices, bases and parallelepipeds. The Minkowski Convex Body
theorem.

— Exponential sums and generating functions. Totally unimodular polytopes. Decomposing a
rational cone into unimodular cones. Efficient counting of integer points in rational polytopes.

— The polynomial behavior of the number of integer points in polytopes. A valuation on rational
cones.

2. Algebra and Representation Theory. ([DF04], [Bur65])

e Introduction to Group Theory. ([DF04], Ch.1-6)

— Basic Groups. Subgroups. Quotient groups and Homomorphisms.
— Group actions. Sylow’s theorem.

— Direct and semidirect products. The fundamental theorem of finitely generated Abelian
groups.
— p-Groups, nilpotent groups and solvable groups.

e Representation Theory of Rings with Identity. ([DF04], [Bur65])



— Rings, Modules, Vector Spaces. Ring homomorphisms, quotient rings and ideals. Module
homomorphisms and quotient modules. The matrix of linear transformation. Direct sum.

— Representation modules. The regular representation.

— The principle indecomposable representations. The radical of a ring. Semisimple rings. The
Wedderburn structure theorems for semisimple rings.

— Intertwining numbers. Multiplicities of the indecomposable components in the regular repre-
sentation.

e Representation Theory of Finite Groups and Theory of Characters. ([Bur65])

— The group algebra. Semisimplicity of the group algebra. The center of the group algebra.
The number of inequivalent irreducible representations.

— Orthogonal relations on the irreducible characters of the group. Module of characters over
the integers, symmetric bilinear form on characters.

— The Kronecker product of two representations. Induced representations and induced charac-
ters.

— Normal subgroups and the character table. Representations of cyclic groups and abelian
groups.

3. Complex Analysis. ([SS03])

e Cauchy’s Theorem and Applications.

e Meromorphic Functions and the Logarithm.
e The Fourier Transform.

e Entire Functions.

e The Gamma and Zeta Functions.
4. Probability Theory. ([Dur05])

e Laws of Large Numbers.
Central Limit Theorems.
e Random Walks.

e Martingales.

e Markov Chains.

e Brownian Motion.

5. Real Analysis. ([HNO1])

e Banach Spaces.
Hilbert Spaces.

Fourier Series.

Distributions and the Fourier Transform.

Measure Theory and Function Spaces.
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