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September 2007

Problem 1.1

Suppose that f : [0, 1]→ R is continuous. Prove that

lim
n→∞

∫ 1

0

f(xn) dx

exists and evaluate the limit. Does the limit always exist if f is only assumed to be integrable?

|f(xn)| ≤M where M is the bound for f which exists due to its continuity. By the dominated convergence

theorem this allows us to bring in the limit

lim
n→∞

∫ 1

0

f(xn) dx =

∫ 1

0

lim
n→∞

f(xn) dx =

∫ 1

0

f( lim
n→∞

xn) dx =

∫ 1

0

f(0) dx

If f is just integrable but not continuous, such as f(x) = x−1/2 then we have

lim

∫
x−n/2 dx = lim

x−n/2+1

−n/2 + 1

=∞

so the limit does not exist.
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Problem 1.2

Define

T (t)
(∑

fne
inx
)

=
∑

eiwntfne
inx

(a)

Show that T (t) is a unitary map.

〈T (t)f, T (t)g〉 =

∫ ∑
e−iwntfne

−inx
∑

eiwntgne
inx dx

=

∫
fngn dx

= 〈f, g〉

(b)

Show that T (s)T (t) = T (s+ t).

T (s)T (t) = T (s)
∑

eiwntfne
inx

=
∑

eiwnseiwntfne
inx

=
∑

eiwn(t+s+fne
inx

= T (s+ t)

(c)

Show that if f ∈ C∞ then so is T (t)f .
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January 2008

Problem 2.1

Define fn : [0, 1]→ R by

fn(x) = (−1)nxn(1− x)

(a)

Show that
∑
fn converges uniformly on [0, 1]

We are looking at the summation
∑N

(−1)nxn(1− x) = (1− x)
∑N −xn = (1− x)−x

N

1+x = 1 so fn
converges uniformly to 1.

(b)

Show that
∑
|fn| converges pointwise on [0, 1] but not uniformly

For x 6= 1,
∑N

xn(1− x) = (1− x)
∑N

xn = 1−x
1−xx

N = xN which converges pointwise to 0.
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Problem 2.2

Consider X = R2 equipped with the Euclidean metric,

e(x, y) = [(x1 − y1)2 + (x2 − y2)]1/2,

where x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2. Define d : X ×X → R by

d(x, y) = e(x, y) when x, y lie on the same ray through the origin

= e(x, 0) + e(0, y) if not

(a)

Prove that (X, d) is a metric space.

d(x, y) = 0 is only possible if x, y lie on the same ray, and only then possible if x = y

d(x, y) = d(y, x) is trivial.

d(x, z) ≥ d(x, y) + d(y, z) is more difficult, if x, z are on the same ray this is trivial.

If x, z are not on the same ray then d(x, z) = e(x, 0) + e(0, y). We have two choices for y.

If y is not on the same ray as either of x, z we have d(x, y) + d(y, z) = e(x, 0) + e(0, y) + e(y, 0) +

e(0, z) > e(x, 0) + e(0, z)

If y is on the same ray as (at most) one of x, z we have d(x, y)+d(y, z) = e(x, 0)+e(0, y)+e(y, z) >

e(x, 0) + e(0, z)

and so we are done showing d is a metric.

(b)

Give an example of a set that is open in (X, d) but not open in (X, e).

Take the open unit ball B1((100, 0)), under the d metric this is a line on x-axis. However under

the usual e metric this line is not open since it is a line in a 2 dimensional space.
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Problem 2.3

Prove the Hahn-Banach Theorem
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Problem 2.4

(a)

Show that the Resolvent is open.

Suppose we have λ0 in the resolvent, what restrictions do we have on λ for λI−A to be invertible?

λI −A = (λ0I −A)(I − (λ0 − λ)(λ0I −A)−1)

we see that only way this operator is invertible is if ‖(λ0 − λ)((λ0I −A)−1)‖ < 1 so that |(λ0 − λ)| <
1

‖((λ0I−A)−1)‖

(b)

Prove that ‖λ0I − A)−1‖ ≥ 1
d(λ0,σ(A)) where d is the inf distance between λ0 an element of the

spectrum.

Well if it wasn’t larger then that, then this would imply there was an element of the spectrum for

which ((σI −A)−1) was invertible which is clearly not possible.
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September 2008

Problem 3.1

Prove that the dual space of c0 is `1, where

c0 = {x = (xn) such that limxn = 0}

Choose some linear function φ, then φ : c0 → R, we can learn alot about φ but looking at how it interacts

elements of the form ei = (0, . . . , 1, 0, . . . ), φ(ei) = λi, so we can actually think of φ as looking something

like φ(x) =
∞∑
i=0

xiφ(ei) so what constraints do we need on λi to ensure that
∞∑
i=0

xiλi converges?

So all we know is that at some point the absolute value of the elements of the tail of c0 have to be less

then ε

so what constraints do we have on λi?

∞∑
i=N

|xi|λi ≤
∞∑
i=N

ελi

This means that we need the sum of λi to converge, however we actually need the sum of the absolute

value of λi to converge as well.

Take some sequence x, multiply each element of x by sgn(φ(ei)xi), this means when you apply φ to x

you have
∑
xi sgn(φ(ei)xi)φ(ei) which is equal to

∑
ε|φ(ei)| =

∑
ε|λi|

This shows that {lambdai} ∈ `1 Choose a sequence in `1, can we make a linear function on c0 out of

this? Using the fact that c0 is a closed banach subspace of `∞ we use the sup norm onf c0.

choose x ∈ c0, y ∈ `1, do the same pairing that we had above

|
∑

xiyi| ≤ sup |xi|
∑
|yi|

≤ C‖x‖supnorm
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Problem 3.2

Let {fn} be a sequence of differentiable functions on a finite interval [a, b] such that the functions them-

selves and their derivatives are uniformly bounded on [a, b]. Prove that {fn} has a uniformly converging

subsequence.

Arzelà-Ascoli states that a sequence of continuous functions has a uniformly convergent subsequence if

the sequence is uniformly bounded and equicontinuous.

We are given that uniform boundedness is satisfied, to show equicontinuity we use the mean value theorem

|f(x)− f(y)| = |f ′(a)||x− y|
≤ C|x− y|

where the C is the bound for the functions and derivatives given. Arzela Ascoli is satisfied and so we are

done.
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Problem 3.3

Let f ∈ L1(R) and Vf be the closed subspace generated by the translates of f , i.e. Vf := {f(· − y) ∀ y ∈ R.

Suppose that f̂(ξ0) = 0 for some ξ0. Show that ĥ(ξ0) = 0 for all h ∈ Vf . Show that if Vf = L1(R), then f̂

never vanishes.

Source: http://math.stackexchange.com/questions/143118/is-it-true-that-a-fourier-transform-of-f-never-vanishes-if-the-translates-of

Assume by contradiction that

f̂(ψ) = 0.

Then, if h is a translate of f it is easy to show that

ĥ(ψ) = 0.

Now, let g ∈ Vf . Then g = limhn where hn are linear combinations of translates of f . Thus

ĥn(ψ) = 0,

and since hn → g in L1 we get ĥn(ψ)→ ĝ(ψ).

Thus, we indeed get

ĝ(ψ) = 0 ∀ g ∈ Vf .

Now to get the contradiction, we need to use the fact that for each ψ ∈ Ĝ there exists some g ∈ L1 so that

ĝ(ψ) 6= 0.

This is easy, let u be any compactly supported continuous function on Ĝ so that u(ψ) 6= 0. Then g = ˇu ∗ ũ
works, where ˇ is the inverse Fourier Transform. This last part can probably be proven much easier, for

example if g is non-zero, then ĝ is not vanishing at some point, and then by multiplying g by the right

character ê...g is not vanishing at ψ.

I don’t entirely understand why you take the convolution of u with its conjugate, would you explain this?

Because ǔ is not necesarily an L1 function, but it is an L2. Then |ǔ|2 is L1, and |ǔ|2 = ˇu ∗ ũ.
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Problem 3.4

(a)

State the Stone-Weierstrass theorem for a compact Hausdorff space X.

(b)

Prove that the algebra generated by functions of the form f(x, y) = g(x)h(y) where g, h ∈ C(X) is

dense in C(X ×X).
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Problem 3.5

For r > 0, define the dilation drf : R→ R of a function f : R→ R by drf(x) = f(rx), and the dilation drT

of a distribution T ∈ D(R) by

〈drT, φ〉 =
1

r
〈T,D1/rφ〉 for all test functions φ ∈ D(R)

(a)

Show that the dilation of a regular distribution Tf given by

〈Tf , φ〉 =

∫
f(x)φ(x) dx

agrees with the dilation of the corresponding function f .

Let’s take the dilation of Tf

〈drT, φ〉 =
1

r
〈T, d1/rφ〉

=
1

r

∫
f(x)φ(x/r) dx

=
1

r

∫
f(ry)φ(y)r dy

=

∫
f(ry)φ(y) dy

=

∫
drf(y)φ(y) dy

we see that the dilation of Tf simply dilates f

(b)

A distribution is homogeneous of degree n if drT = rnT . Show that the δ-distribution is homogeneous

of degree −1.

〈drδ, φ〉 =
1

r
〈δ, d1/rφ〉

=
1

r
φ(0)

= 〈1
r
δ, φ〉

so we see that drδ = r−1δ.

(c)

If T is a homogeneous distribution of degree n, prove that the derivative T ′ is a homogeneous distri-

bution of degree n− 1.

Page 14 of 65



Old Prelim Solutions September 2008

We look at T ′,

〈drT ′, φ〉 =
1

r
〈T ′, d1/rφ〉

= −1

r
〈T, (d1/rφ)′〉

= − 1

r2
〈T, φ′(x/r)〉

= − 1

r2
〈T, d1/rφ′〉

= −1

r
〈drT, φ′〉

= −1

r
〈rnT, φ′〉

=
1

r
〈rnT ′, φ〉

= 〈rn−1T ′, φ〉
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Problem 3.6

Let `2(N) be the space of square-summable, real sequences x = (x1, x2, x3, . . . ) with norm

‖x‖ =

( ∞∑
n=1

x2n

)1/2

Define F : `2(N)→ R by

F (x) =

∞∑
n=1

{
1

n
x2n − x4n

}

(a)

Prove that F is differentiable at x = 0, with derivative F ′(0) : `2(N)→ R equal to zero.

F (x+ h)− F (x)

h

(b)

Show that the second derivative of F at x = 0

F ′′(0) : `2(N)× `2(N)→ R

is positive definite meaning that

F ′′(0)(h, h) > 0

for every h ∈ `2(N).

(c)

Show that F does not attain at local minimum at x = 0.
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January 2009

Problem 4.1

Let 1 < p < 2.

(a)

Give an example of a function f ∈ L1(R) such that f /∈ Lp(R) and a function g ∈ L2(R) such that

g /∈ Lp(R).

Choose the function f = 1
xχ[1,∞] ∫

1

x
dx = log(x)

∣∣∣∞
1

=∞

so f /∈ L1(R) ∫
1

x2
dx = − 1

x

∣∣∣∞
1

= 0 + 1

= 1

so that f ∈ L2(R)

Now look at the function g(x) = x−
1
2χ(0,1)∫

x−
1
2 dx = 2x

1
2

∣∣∣1
0

= 2

so g ∈ L1(R) ∫
x−1 dx = log(x)

∣∣∣1
0

= 0 +∞
=∞

so that g /∈ L2(R)

(b)

If f ∈ L1(R)
⋂
L2(R), prove that f ∈ Lp(R).

There exists some 0 < λ < 1 such that λ
1 + 1−λ

2 = 1
p for 1 < p < 2, rewriting this we have

λp

1
+

(1− λ)p

2
= 1

our proof will appeal to Holder’s Inequality which gives us the intuition for the steps below
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‖f‖Lp(R) =

(∫
|f |p

) 1
p

=

(∫
|f |λp|f |(1−λ)p

) 1
p

≤

(∫ |f |λp 1
λp

)λp(∫
|f |(1−λ)p

2
(1−λ)p

) (1−λ)p
2

 1
p

≤
(∫
|f |
)λ(∫

|f |2
) (1−λ)

2

≤ ‖f‖λL1R‖f‖
(1−λ)

2

L2(R)
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Problem 4.2

(a)

State the Weierstrass approximation theorem.

Suppose f is a continuous complex-valued function defined on the real interval [a, b]. For every ε > 0,

there exists a polynomial function p over C such that for all x ∈ [a, b], we have |(x) − p(x)| < ε, or

equivalently, the supremum norm ‖f − p‖ < ε. If f is real-valued, the polynomial function can be

taken over R.

(b)

Suppose that f : [0, 1]→ R is continuous and∫ 1

0

xnf(x) dx = 0

for all non-negative integers n. Prove that f = 0.

Our goal is to show that
∫ 1

0
|f |2 dx = 0 we can do this by taking a sequence of polynomial approxi-

mations, pn that converge uniformly to f so that

lim
n→∞

∫ 1

0

pn(x)f(x) dx =

∫ 1

0

|f(x)|2 dx

However since each pn is a finite polynomial of the form c1x
1 + · · ·+ cnx

n we have that

lim
n→∞

∫ 1

0

pn(x)f(x) dx = lim
n→∞

0 = 0
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Problem 4.3

(a)

Define strong convergence, xn → x, and weak convergencer xn ⇀ x, of a sequence (xn) in a Hilbert

space H.

Strong Convergence of a sequence means that lim
n→∞

‖xn − x‖ = 0.

Weak convergence means that for any y ∈ H, lim
n→∞

〈xn, y〉 = 〈x, y〉.

(b)

If xn ⇀ x weakly in H and ‖xn‖ → ‖x‖, prove that xn → x strongly.

lim
n→∞

‖xn − x‖2 = lim
n→∞

〈xn − x, xn − x〉

= lim
n→∞

〈xn, xn〉 − 〈xn, x〉 − 〈x, xn〉+ 〈x, x〉

= 〈x, x〉 − 〈x, x〉 − 〈x, x〉+ 〈x, x〉
= 0

(c)

Give an example of a Hilbert space H and sequence (xn) in H such that xn ⇀ x weakly and

‖x‖ < lim inf
n→∞

‖xn‖.

We know that the basis elements of a Hilbert space converge weakly to 0, so that

‖0‖ < lim inf
n→∞

‖en‖ = 1
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Problem 4.4

Suppose that T : H → H is a bounded linear operator on a complex Hilbert space H such that

T ∗ = −T, T 2 = −I

and T 6= ±iI. Define

P =
1

2
(I + iT ), Q =

1

2
(I − iT )

(a)

Prove that P,Q are orthogonal projections on H.

First lets prove they are projections,

P 2 =
1

4
(I2 − T 2 + 2iT )

=
1

4
(I + I + 2iT )

=
1

2
(I + iT )

= P

and

Q2 =
1

4
(I2 − T 2 − 2iT )

=
1

4
(I + I − 2iT )

=
1

2
(I − iT )

= Q

Now to show they are orthogonal we will show the property 〈Px, y〉 = 〈x, Py〉 and 〈Qx, y〉 =

〈x,Qy〉.

〈Px, y〉 = 〈1
2

(I + iT )x, y〉

= 〈1
2
Ix, y〉+ 〈 i

2
Tx, y〉

= 〈x, 1

2
Iy〉+ 〈Tx, −i

2
− Ty〉

= 〈x, 1

2
Iy〉+ 〈Tx, i

2
Ty〉

= 〈x, 1

2
(I + iT )y〉

= 〈x, Py〉
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〈Qx, y〉 = 〈1
2

(I − iT )x, y〉

= 〈1
2
Ix, y〉+ 〈−i

2
Tx, y〉

= 〈x, 1

2
Iy〉+ 〈x, i

2
− Ty〉

= 〈x, 1

2
Iy〉+ 〈x, −i

2
Ty〉

= 〈x, 1

2
(I − iT )y〉

= 〈x,Qy〉

(b)

Determine the spectrum of T and classify it.

We will solve this by first finding the resolvent, the identity T 2 = −I suggests the inverse of T − λI
maybe be of the form

c(T + λI)

Let’s attempt to solve for the constant c,

I = (T − λI)c(T + λI)

= c(T 2 − λ2I2)

= c(−I − λ2I)

so we must solve for c

Ic =
I

−1− λ2

and so

c =
−1

1 + λ2

which is well defined for all λ 6= ±i, however we have that T 6= ±iI so that i cannot belong to the

point spectrum. Since T 4x = x we have that the range of T is onto so that the continuous and

residual spectrums are empty. This means that ±i belongs to the resolvent and the spectrum for T

is empty.
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Problem 4.5

Let P (R) be the Schwartz space of smooth, rapidly decreasing functions f : R → C. Define an operator

H : P (R)→ L2(R) by

(Ĥf)(ξ) = i sgn(ξ)f̂(ξ) = if̂(ξ) if ξ > 0

− if̂(ξ) if ξ < 0

where f̂ denotes the Fourier transform of f .

(a)

Why is Hf ∈ L2(R) for any f ∈ P (R)?

Since f ∈ P (R) it is in L2(R) and so is the Fourier transform. P (R) so that the Fourier transform of

f is in L2(R) so by Plancheral’s theorem

‖Hf‖2L2(R) = ‖Ĥf‖2L2(R)

=

∫
R
|i sgn(ξ)f̂(ξ)|2 dx

=

∫ ∞
0

|if̂(ξ)|2 dx+

∫ 0

−∞
| − if̂(ξ)|2 dx

=

∫ ∞
0

|f̂(ξ)|2 dx+

∫ 0

−∞
|f̂(ξ)|2 dx

=

∫ ∞
−∞
|f̂(ξ)|2 dx

= ‖f̂‖2L2(R)

(b)

If f ∈ P (R) and Hf ∈ L1(R), show that ∫
R
f(x) dx = 0

[Hint: you may want to use the Riemann-Lebesgue Lemma.]

The Riemann-Lebesgue lemma states that f̂(ξ)→ 0 as ξ →∞ and that if f ∈ L1 then f̂ ∈ C.

If Hf ∈ L1 then we have that Ĥf ∈ C and it decays as |ξ| → ∞, since Ĥf is defined in terms of f̂(ξ)

this means that the Fourier transformation of f must go to 0 as ξ →∞.

Now since f ∈ P (R) we know that f̂ is also in P (R) and hence continuous, since Ĥf is also continuous
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we know that f̂(0) = 0 so that

f̂(0) = 2π−n/2
∫
R
f(x)e−ix0 dx

= 2π−n/2
∫
R
f(x) dx

= 0

and we are done!
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Problem 4.6

Let ∆ denote the Laplace operator in R3.

(a)

Prove that

lim
ε→0

∫
1

|x
∆f(x) dx = 4πf(0), ∀f ∈ P (R3).

(b)

Find the solution u of the Poisson problem

∆u = 4πf(x), lim
|x|→∞

u(x) = 0

for f ∈ P (R3).
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Problem 4.7

Show that the solution to the system

ẋ = 1 + x10

goes to infinity in finite time.

Let’s solve by seperation of variables ∫
1

1 + x10
dx = t+ c

Keep in mind that 1
1+x10 <

1
1+x2 , so that t+ c =

∫
1

1+x10 dx ≤
∫

1
1+x2 dx = tan−1(x), so that as x→∞ we

have that t is always finite.
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Problem 4.8

Consider the nonlinear system of ODEs:

ẋ = y − x
(
(x2 + y2)4 − µ

(
(x2 + y2)2 − 1

)
− 1
)

ẏ = −x− y
(
(x2 + y2)4 − µ

(
(x2 + y2)2 − 1

)
− 1
)
.

(a)

Rewrite the system in polar coordinates.

First lets rewrite ẋ, ẏ in polar coordinates

ẋ = y − x(r8 − µ(r4 − 1)− 1)

ẏ = −x− y(r8 − µ(r4 − 1)− 1)

Using the substitution ẋx+ ẏy = ṙr and θ̇ = xẏ−yẋ
r2

ṙr = ẋx+ ẏy

= x
(
y − x(r8 − µ(r4 − 1)− 1)

)
+ y

(
−x− y(r8 − µ(r4 − 1)− 1)

)
= xy − x2(r8 − µ(r4 − 1)− 1)− xy − y2(r8 − µ(r4 − 1)− 1)

= −x2(r8 − µ(r4 − 1)− 1)− y2(r8 − µ(r4 − 1)− 1)

= −(x2 + y2)(r8 − µ(r4 − 1)− 1)

= −r2(r8 − µ(r4 − 1)− 1)

= −r10 + µr6 − µr2 + r2

and so

ṙ = −r9 + µr5 − µr + r

θ̇r2 = xẏ − yẋ
= x(−x− y(r8 − µ(r4 − 1)− 1))− y(y − x(r8 − µ(r4 − 1)− 1))

= −x2 − xy(r8 − µ(r4 − 1)− 1)− y2 + xy(r8 − µ(r4 − 1)− 1)

= −x2 − y2

= −r2

so that

θ̇ = −1

(b)

For 0 ≤ µ < 1, show that the circular region that lies within concentric circles with radius rmin = 1/2

and rmax−2 is a trapping region. And use the Poincare-Bendixson theorem to show that there exists

a stable limit cycle.
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We want to find rmin we need a criteria for r so that ṙ = −r9 + µr5 − µr + r > 0,

0 < µr5 + r

(c)

Show that a sub-critical Hopf Bifurcation occurs at µ = 1.
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September 2009

Problem 5.1

For ε > 0, let ηε denote the family of standard mollifiers on R2. Give u ∈ L2(R2), define the function

uε = ηε ∗ u in R2.

Prove that

ε‖Duε‖L2(R2) ≤ ‖u‖L2(R2)

where the constant C depends on the mollifying function, but not on u.

First we establish waht Duε really is

D(u ∗ ηε) = Dx

∫
u(x− y)ηε(y) dy

=

∫
Dxu(x− y)ηε(y) dy

=

∫
−Dyu(x− y)ηε(y) dy

=

∫
u(x− y)Dyηε(y) dy

= u ∗Dηε

using this and Young’s inequality we have

‖Duε‖L2(R2) ≤ ‖u‖L2(R2)‖Dηε‖L1(R2)

≤
∫
Dx

1

ε2
η
(x
ε

)
dx ‖u‖L2(R2)

≤
∫
Dx

1

ε2
η (y) ε2 dy ‖u‖L2(R2)

≤
∫
Dxη (y) dy ‖u‖L2(R2)

≤ 1

ε

∫
Dyη (y) dy ‖u‖L2(R2)

≤ 1

ε
C‖u‖L2(R2)
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Problem 5.2

Let B(0, 1) ⊂ R3 denote the unit ball |x| < 1. Prove that log |x| ∈ H1(B(0, 1)).

First we will show that log |x| is in L2(B(0, 1))

‖ log |x|‖L2(B(0,1)) =

∫ 2π

0

∫ π

0

∫ 1

0

| log(r)|2r2 sin(φ) drdθdφ

= 4π

∫ 1

0

| log(r)|2r2 dr

= 4π

∫ 0

−∞
|u|2e2ueu du

= 4π

∫ 0

−∞
|u|2e3u du

= −4π

∫ 0

−∞
2|u| u
|u|

e3u

3
du+ 4π|u|2 e

3u

3

∣∣∣0
−∞

= −4π

∫ 0

−∞
2u
e3u

3
du

= 4π

∫ 0

−∞
2
e3u

9
du− 8π

9π
ue3u

∣∣∣0
−∞

= 4π

∫ 0

−∞
2
e3u

9
du

=
8π

27

Now we will show that D log(x) = 1
|x| ∗

x
|x| = x

|x|2 is in L2.

‖ x

|x|2
‖L2(B(0,1)) =

∫ 2π

0

∫ π

0

∫ 1

0

| x
|x|2
|2r2 sin(φ) drdθdφ

=

∫ 2π

0

∫ π

0

∫ 1

0

|x|2

|x|4
r2 sin(φ) drdθdφ

=

∫ 2π

0

∫ π

0

∫ 1

0

r2

r4
r2 sin(φ) drdθdφ

=

∫ 2π

0

∫ π

0

∫ 1

0

sin(φ) drdθdφ

<∞

so we are done.
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Problem 5.3

Prove that the continuous functions of compact support are a dense subspace of L2(Rd).

Choose a function f ∈ L2(R2), since f has a finite integral we can find a bounded set A where most of the

integral is located so that
∫
R2 f <

∫
A
f + ε. By Urysohn’s lemma we can find a continuous function u so

that u = 1 on A and then decreases to being 0 on some set B disjoint from A. They key is we have that

‖fu− f‖L2(R2) < ε, now our goal is to show that we can find a sequence of continuous functions converging

to fu. Since fu ∈ L2(A) for a bounded set A we can find a sequence of continuous functions {fn} converging

to fu by utilizing the density of simple functions in Lp(A) and the density of continuous functions in the set

of simple functions. This gives us a sequence of continuous functions {fn} so that

‖fn − f‖L2(R2) ≤ ‖fn − fu‖L2(R2) + ‖fu− f‖L2(R2)
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Problem 5.4

There are several senses in which a sequence of bounded operators {Tn} can converge to a bounded operator

T ( in a Hilbert space H).

First, there is convergence in the norm, that is, ‖Tn − T‖ → 0, as n→∞.

Next, there is a weaker convergence, which happens to be called strong convergence, that requires

Tnf → Tf , as n→∞, for every vector f ∈ H.

Finally, there is weak convergence that requires 〈Tnf, g〉 → 〈Tf, g〉 for every pair of vectors f, g ∈ H.

(a)

Show by examples that weak convergence does not imply strong convergence, nor does strong con-

vergence imply convergence in norm

The sequence of reaptedly applied right shift operators, Rn, on the space of `1(Z) converges weakly

to 0 since

〈Rnx, y〉 → 0

however Rnx does converge to 0 for all x since ‖Rnx‖ = ‖x‖ for all n.

The sequence of repeatedly applied left shift operators, Sn, on the space of `1(Z) converges strongly

to 0, however the norm ‖Sn‖ = 1 for all n.

(b)

Show that for any bounded operator T there is a sequence {Tn} of bounded operators of finite rank

so that Tn → T strongly as n→∞.

In the case that T thatH is finite dimensional the constant sequence Tn = T satisfies the properties

of converging strongly and being bounded along with having finite rank (the dimension of its range).

The interesting case is when the dimension of Y is infinite, for this we remember that any f ∈ H
we can decompose f by Plancheral’s identity,

f =
∑
i

〈ei, f〉ei

assuming we are in a infinite dimensional space we have an infinite basis {ei}, lets watch how T acts

on a single basis element of H

T (ei) =
∑
k

〈ek, T (ei)〉ek

so the issue is that T can make a finite dimensional object, a single basis element, to the entire space,

to get finite dimensionality for range lets define Tn where its action on a basis element is

Tn(ei) =

n∑
k=0

〈ek, T (ei)〉ek
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obviously this maps to a finite dimensional space, and for any element x in H we have

Tn(x) =
∑
i

Tn(xi)

=
∑
i

〈ei, x〉Tn(ei)

=
∑
i

(
〈
n∑
k=0

〈ek, T (ei)〉ek

)

which an infinite sum of elements in finite dimensions, so this has finite rank.

The last thing to show is that Tn converges strongly to T ,

lim ‖Tn(ei)− T (ei)‖2 = lim ‖
∞∑
k=n

〈ek, T (ei)〉ek‖2

≤ lim

∞∑
k=n

〈ek, T (ei)〉2

however we know that T is bounded so that ‖T (ei)‖2 =
∑∞
k=1〈ek, T (ei)〉2 < M2 so that the sum

converges, this means that as n→∞,
∑∞
k=n T (ei)

2, goes to 0.

Showing strong convergence for the basis elements of H is sufficient to show strong convergence

for elements in H.
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Problem 5.5

Let H be a Hilbert space. Prove the following variants of the spectral theorem.

(a)

If T1 and T2 are two linear symmetric and compact operators on H that commute (that is T1T2 =

T2T1), show that they
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Problem 5.6

Prove that a normed linear space is complete if and only if every absolutely summable sequence is summable.

Absolutely summable means that
∑
|an| <∞.

Let’s assume that our space is complete, then choose an absolutely summable sequence so that,
∑
|an| <∞,

then we have that
∑
anis is a Cauchy sequence since ‖Sn − Sm‖ = ‖

∑m
n ak‖ ≤

∑m
n ‖ak‖ which goes to 0

as n,m go to infinity since the sequence is absolutely summable.

Now lets choose a Cauchy sequence, an, in the space, lets extract a subsequence so that ‖an − am‖ < ε/2n.

this means that
∑
‖an − an+1‖ < ε, so that it is a absolutely summable sequence which means it must be

summable, writing it out we have
∑
an+1 − an = lim an − a1 converges, so that an has a limit.
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Problem 5.7

Consider the equation
d2x

dt2
+ x− εx|x| = 0.

(a)

Find the equation for the conserved energy.

Multiply both sides by ẋ,

ẋẍ+ ẋx− εxẋ|x| = 0

we have that the function ẍ2/2 + x2/2− ε|x|3/3 is a conserved energy.

(b)

Find the equilibrium points and the values of ε for which they exist.

First we write the equation as a system

ẋ = y

ẏ = εx|x| − x

clearly equilibrium points occur at (0, 0) and (±1/ε, 0) for ε 6= 0 and (0, 0) for ε = 0.

(c)

There are two qualitatively different phase portraits, for different values of ε. CLEARLY sketch and

label these phase portraits.

(d)

Show that there exist initial conditions, for any ε, for which solutions are periodic.

(e)

For initial data x(0) = a, ẋ(0) = 0, calculate the first two terms (in εa) of the Taylor expansion of the

period of the orbit in the limit εa→ 0.
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April 2010

Problem 6.1

Let (X, d) be a complete metric space, ẋ ∈ X, and R > 0. Set D := {x ∈ X : d(x, ẋ) ≤ r}, and let

f : D → X satisfying

d(f(x), f(y)) ≤ kd(x, y)

for any x, y ∈ D, where k ∈ (0, 1) is a constant.

Prove that if d(ẋ, f(ẋ)) ≤ r(1 − k), then f admits a unique fixed point. (Guidelines: Assume the Banach

fixed point theorem, also known as the contraction mapping theorem.)

The reason we can’t apply the regular contraction mapping theorem is that the construction argument

used in it relies on if x ∈ X, f(x) ∈ X, where as we have our function f that takes you from D to x. Our

goal is to show that f actually maps D to D, so choosing x ∈ D we have

d(f(x), ẋ) ≤ d(f(x), f(ẋ)) + d(f(ẋ), ẋ)

≤ kd(x, ẋ) + r(1− k)

≤ kr + r − rk
≤ r

so we see that f is actually a function from D → D, allowing us to use the contraction mapping theorem
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Problem 6.2

Give an example of two normed vector spaces, X and Y , and of a sequence of operators, {Tn}∞n=0, Tn ∈
L(X,Y ) (where L(X,Y ) is the space of the continuous operators from X to Y , with the topology induced

by the operator norm) such that {Tn}∞n=0 is a Cauchy sequence but it does not converge in L(X,Y ). (Notice

that Y cannot be a Banach space otherwise L(X,Y ) is complete.)

Let’s pick the most typical incomplete normed vector spaces, the rationals, so that X = Q and Y = Q.

Let’s define ρn(x) = (an)x where an is a sequence of rationals converging to
√

2, ρn : Q → Q this is a

bounded linear operator but it converges to a bounded linear operator ρ : Q → R/Q not contained in the

space.
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Problem 6.3

Let (an) be a sequence of positive numbers such that

∞∑
n=1

a3n

converges. Show that
∞∑
n=0

an
n

By Holder’s inequality we have

∑ an
n
≤

(∑(
1

n

)3/2
)2/3 (∑

a3n

)1/3
and since both terms converge we are done.
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Problem 6.4

Suppose that h : [0, 1]2 → [0, 1]2 is a continuously differentiable function from the square to the square with a

continuously differentiable inverse h−1. Define an operator T on the Hilbert space L2([0, 1]2) by the formula

T (f) = f ◦ h. Prove that T is a well-defined bounded operator on this Hilbert space.

‖f ◦ h‖2L2 =

∫
|f(h(x))| dx

Let us do a u substition for h(x) so that u = h(x), taking the Jacobian x with respect to u we get a well

defined term that is bounded by some M on the unit box so that

∫
|f(h(x))| dx =

∫
|f(u)||J(u)| du

≤
∫
|f(u)|M du

≤M‖f‖L2
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Problem 6.5

Let Hs(R) denote the Sobolev space of order s on the real line R, and let

‖u‖s :=

(∫
R

(1 + |ξ|2)s|û(ξ)|2 dξ
) 1

2

denote the norm on Hs(R), where û(ξ) := 1
2π

∫
R u(x)e−xξ dx denotes the Fourier transform of u.

Suppose that r < s < t, all real, and ε > 0 is given. Show that there exists a constant C > 0 such that

‖u‖s ≤ ε‖u‖t + C‖u‖r ∀ u ∈ Ht(R)

Assume it is not true. Then there exists a sequence (un) such that

‖un‖s > ε‖un‖t + n‖un‖r.
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Problem 6.6

Let f : [0, 1]→ R. Show that f is continuous if and only if the graph of f is compact in R2.

Suppose that f is continuous, we will show that G the graph of f is closed and bounded.

Since f is continuous it reaches its maximum and minimum on [0, 1] so that m < f(x) < M and so

G is contained in [0, 1] × [m,M ] which is bounded. Now we must show G is closed, choose a sequence

(xn, yn) → (x, y), f(xn) = yn, our goal is to show that (x, y) is contained in G so that f(x) = y. Since

lim f(xn) = f(limxn) = f(x) = y by continuity of f we are done.

Now suppose the graph of f , G is compact. We will show that f is continuous, choose a sequence

(xn, yn) so that f(xn) = yn and xn → x. The sequence (xn, yn) is contained in a compact space so that

there must exist a convergent subsequence converging to (x, y) and since G is closed (x, y) ∈ G, so that

f(limxn) = f(x) = y = lim ynk = lim f(xnk) = lim f(xn) where the last inequality comes from f begin well

defined so that if xn → x, xnk → x then lim f(xn) = lim f(xnk).

Page 42 of 65



Old Prelim Solutions September 2010

September 2010

Problem 7.1

Let f(x, y) denote a C1 function on R2. Suppose that

f(0, 0) = 0

Prove that there exist two functions, A(x, y) and B(x, y), both continuous on R@ such that

f(x, y) = xA(x, y) + yB(x, y) ∀(x, y) ∈ R2

Hint: Consider the function g(t) = f(tx, ty) and express f(x, y) in terms of g via the fundamental theorem

of calculus.

Define g(t) = f(tx, ty), this means that

g′(t) = x∂xf(tx, ty) + y∂yf(tx, ty)

Now we know that
∫ 1

0
g′(t) dt = g(1)− g(0) = f(x, y) so that

f(x, y) =

∫ 1

0

g′(t) dt = x

∫
∂xf(tx, ty) dt+ y

∫
∂yf(tx, ty) dt

Where both integrals are continuous because of f ∈ C1 and integration preserving continuity.
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Problem 7.2

The Fourier transform F of a distribution is denoted via the duality relation

〈Ff, φ〉 = 〈f,F∗φ〉

for all φ ∈ C∞0 (R), the smooth compactly-supported test functions on R, where

F∗φ(x) =
1√
2π

∫
R
eiξxφ(ξ) dξ

Explicity compute Ff for the function

f(x) = x, x > 0

0, x ≤ 0

Since f is L1
loc we can treat it as the action of a regular distribution Tf so that

〈Tf , φ〉 =

∫
R
f(x)φ(x) dx =

∫ ∞
0

xφ(x) dx

So lets start

〈FTf , φ〉 = 〈Tf ,F∗φ〉

=

∫
R
f(y)

(
1√
2π

∫
R
eiξyφ(ξ) dξ

)
dy

=

∫ ∞
0

y

(
1√
2π

∫
R
eiξyφ(ξ) dξ

)
dy

=
1√
2π

∫ ∞
0

∫
R
yeiξyφ(ξ) dξ dy

=
1√
2π

∫ ∞
0

∫
R

−1

i
eiξyφ′(ξ) dξ dy

=
i√
2π

∫ ∞
0

∫
R
eiξyφ′(ξ) dξ dy

= i

∫ ∞
0

F∗(φ′) dy

= i

∫
R
H(y)F∗(φ′) dy

= i〈H,F∗(φ′)〉
= i〈FH,φ′〉
= −i〈(FH)′, φ〉

so we see that the Fourier transform of f is −i(FH)′.
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Problem 7.3

Let {Pn(x)} denote a sequence of polynomials on R such that

Pn → 0 uniformly on R as n→∞

Prove that, for n sufficiently large, all Pn are constant polynomials.

If Pn goes to 0 uniformly then we have that for n > N , Pn =
kn∑
i=0

ai,nx
i ≤ ε for all x, however this is only

possible if the coefficient of all the xi terms are 0 for i 6= 0, since otherwise this would mean that you could

choose an x large enough such that |xi| > ε. So this means after this N point we are only left with a sequence

of the form a0,n which is just a sequence of constant polynomials.

Page 45 of 65



Old Prelim Solutions September 2010

Problem 7.4

For g ∈ L1(R3), the convolution operator G is defined on L2(R3) by

Gf(x) =
1

(2π)3/2

∫
R3

g(x− y)f(y) dy, f ∈ L2(R3)

Prove that the operator G with

g(x) =
1

4π

e−|x|

|x|
, x ∈ R3

is a bounded operator on L2(R3), and the operator norm ‖G‖op ≤ 1.

First let’s figure out what space G maps you to, is it L2?

‖Gf(x)‖L2(R3) = ‖ 1

(2π)3/2
g ? f‖L2(R3)

≤ 1

(2π)3/2
‖g‖L1(R3)‖f‖L2(R3)

by Young’s inequality we see that Gf ∈ L2(R3), we continue to find the bound on G.

‖g‖L1(R3) =

∫
R3

∣∣∣∣ 1

4π

e−|x|

|x|

∣∣∣∣ dx
=

∫
R3

1

4π

e−|x|

|x|
dx

=

∫ 2π

0

∫ π

0

∫ ∞
0

1

4π

e−r

r
r2 sin(φ) dr dφ dθ

=

∫ π

0

∫ ∞
0

1

2
e−rr sin(φ) dr dφ

=

∫ ∞
0

e−rr dr

= 1
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Problem 7.5

Consider the map which associates to each sequence {xn : n ∈ N, xn ∈ R} the sequence, {(F ({xn}))m ∈ R},
defined as follows

{F ({xn})}m :=
xm
m

for m = 1, 2, . . .

Note for 1 ≤ p < ∞, lp denotes the space of sequences {xn} such that
∑
|xn|p < ∞ while l∞ denotes the

space of sequences such that sup |xn| <∞.

(a)

Determine (with proof) the values of p ∈ [1,∞] for which the map F : lp → l1 is well-defined and

continuous.

To find when F is well defined we need to find out what constraints we need on p to ensure that∑∣∣xm
m

∣∣ <∞.

By Holder’s inequality we have

∑∣∣∣xm
m

∣∣∣ ≤ (∑ |xm|p
)1/p(∑ 1

mq

)1/q

The right sum only converges for q > 1, we know the relationship between p and q is,

1

p
+

1

q
= 1

If q is bigger then 1 then this means that we need 1
p to be nonzero, so that p 6=∞

Now what do we need for F to be continuous? Choose a sequence of sequences so that xn, a

sequence, converges to x, another sequence in the lp norm.

We want to find what we need so that F (xn) converges to F (x) with respect to the l1 norm.

‖F (xn)− F (x)‖l1 =
∑∣∣∣∣xn,m − xmm

∣∣∣∣
≤
(∑

|xn,m − xm|p
)1/p(∑ 1

|m|q

)1/q

≤ ‖xn − x‖lp
(∑ 1

|m|q

)1/q

so we see yet again that we only have continuity if p 6=∞.

(b)

Next, Determine the values of q ∈ [1,∞] for which the map F : lq → l2 is well-defined and continuous.

Let’s figure out continuity first
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‖F (xn)− F (x)‖2l2 =
∑∣∣∣∣xn,m − xmm

∣∣∣∣2
=
∑ |xn,m − xm|2

|m|2

≤
(∑

|xn,m − xm|2p
)1/p(∑ 1

|m|2q

)1/q

≤ ‖xn − x‖2l2p
(∑ 1

|m|2q

)1/q

so we need that q > 1/2, in terms of the 1
p + 1

q = 1 relationship this means that

1

p
= 1− 1

q

≥ 1− 2

≥ −1
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Problem 7.6

TRUE FALSE

(a)

If (xn) is weakly convergent then it is strongly convergent.

False, the basis elements of an infinite-dimensional Hilbert space converge weakly to 0.

(b)

If xn is strongly convergent then it is bounded.

True, ‖xn − x‖ can be easily shown to be bounded

(c)

If xn is weakly convergent then it is bounded.

True, define ρn(y) = 〈xn, y〉 clearly ‖ρn‖ = ‖xn‖ and since for all y, ρn(y) converges to 〈x, y〉
we have that ρn(y) is bounded for all y. By the Uniform-Boundedness theorem this means that the

collection of norms of ρn is bounded, which is equivalent to saying that the collection of norms of xn
are bounded as well.

(d)

If xn is bounded then there exists a strongly convergent subsequence of xn.

False, the basis elements of an infinite dimensional Hilbert space are bounded but there exists no

strongly convergent subsequence

(e)

If xn is bounded, there exists a weakly convergent subsequence of xn.

True, by the Banach-Alaoglu theorem the closed unit ball is weakly compact so that any sequence

has a weakly convergent subsequence

(f)

If xn is weakly convergent and T is a bounded linear operator from H to Rd, for some d, then T (xn)

converges in Rd.

Let us rewrite T as T (xn) =
∑d
i=1 Ti(x) where each Ti is a linear function on a Hilbert space. The

Riesz representation theorem says we can express each Ti as a inner product so that, limT (xn) =

lim
∑
Ti(xn) = lim

∑
〈y, xn〉 =

∑
〈y, x〉 = T (x).
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March 2011

Problem 8.1

Let ω = (0, 1), the open unit interval in R, and consider the sequence of functions fn(x) = ne−nx. Prov

ethat fn does not converge weakly to f in L1(ω).

We can see that fn converges strongly to 0 under the L1 norm, so it must converge to this weakly as

well, however choose ρ = 1 ∈ L∞(ω) we see that∫ 1

0

fn dx =

∫ 1

0

ne−nx dx

= −e−nx
∣∣∣1
0

= −(e−n − 1)

→ 1

so we have our contradiction.
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Problem 8.2

Let ω = (0, 1), and consider the linear operator A = − d2

dx2 acting on the Sobolev space of functions X where

X = {u = inH2(ω) | u(0) = 0, u(1) = 0},

and where

H2(ω) =
{
u ∈ L2(ω) = Big|du

dx
∈ L2(ω),

d2u

dx2
∈ L2(ω)

}
Find all the eigefunctions of A belonging to the linear span of

{cos(αx), sin(αx)|α ∈ R}

as well as their correponding eigenvalues.

The only functions in the span given that are eigenfunctions of A are of the form or sums of sin(α2πx)

since these satisfy the end point restrictions and

A(sin(α2πx) = 4π2α2(sin(α2πx))

To satisfy the end point restrictions for cos functions you need to add a constant term which disappears

under differentiation.
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Problem 8.3

Let Ω = (0, 1), the open unit interval in R, and set

v(x) = (1 + |logx|)−1

Show that v ∈W 1,1(ω) and that v(0) = 0, but that v
x /∈ L1(ω). (This shows the failure of Hardy’s inequality

in L1.) Note that W 1,1(ω) blah blah blah

First since v has no blow-up at any any points besides 0 we can conclude that if v → 0 as x → 0 then

v ∈ L1.

lim
x→0

v(x) = lim
x→0

1

1− log(x)
=

1

1− lim
x→0

log(x)
=

1

1 +∞
= 0

Now to show that dv/dx = 1
x(1−log(x))2 ∈ L

1

∫ 1

0

1

x(1− log(x))2
dx = −

∫ 1

∞
u−2 du

=

∫ ∞
1

u−2 du

≤ ∞

so v ∈W 1,1. However v(x)/x /∈W 1,1 since∫ 1

0

v(x)

x
dx =

∫ ∞
1

u−1 du

=∞
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Problem 8.4

Let f(x) be a periodic continuous function on R with period 2π. Show that

f̂(ξ) =
∑

bnτnδ in D′

in the sense of distributions. Relate bn to the coefficients of the Fourier Series. τnδ(x) = δ(x+ n).

Our goal is to show that

〈Ff, φ〉 = 〈
∑

bnτnδ, φ〉 ∀φ ∈ C∞0 (R)

lets start with the left side

〈Ff, φ〉 = 〈f,F∗φ〉

=

∫ ∞
−∞

f(x)F∗φ(x) dx

by uniform convergence of the Fourier transform of a continuous function

=

∫ ∞
−∞

∞∑
n=−∞

cne
inxF∗φ(x) dx

by Lebesgue dominated convergence theorem

=

∞∑
n=−∞

∫ ∞
−∞

cne
inxF∗φ(x) dx

=

∞∑
n=−∞

∫ ∞
−∞

cne
inx

∫ ∞
−∞

eiξxφ(ξ)dξ dx

=

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
−∞

cne
inxeiξxφ(ξ)dξ dx

=

∞∑
n=−∞

lim
R→∞

∫ R

−R

∫ ∞
−∞

cne
inxeiξxφ(ξ)dξ dx

by Lebesgue dominated convergence theorem

=
∞∑

n=−∞
lim
R→∞

∫ ∞
−∞

∫ R

−R
cne

inxeiξxφ(ξ) dx dξ

=

∞∑
n=−∞

lim
R→∞

∫ ∞
−∞

cn

∫ R

−R
einxeiξx dxφ(ξ) dξ

=

∞∑
n=−∞

lim
R→∞

∫ ∞
−∞

∫ R

−R
ei(n+ξ)x dxcnφ(ξ) dξ

=

∞∑
n=−∞

lim
R→∞

〈
cn

∫ R

−R
ei(n+ξ)xdx, φ(ξ)

〉
definition of delta distribution

=

∞∑
n=−∞

〈cnδn, φ(ξ)〉
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Problem 8.5

f(x) periodic continuous functions on R with peroid 2π. Prove there is a finite Fourier series

φ(x) = ao +

N∑
n=1

an cos(nx) + bn sin(nx)

such that

|φ(x)− f(x)| < ε
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Problem 8.6

Show that the closed unit ball of {u ∈ C0,α} is a compact set in C([0, 1]).

First we will show that u is uniformly bounded

|u(x)| ≤ ‖u‖C0,α ≤ 1

similarly u is equicontinuous
|u(x)− u(y)|

(x− y)α
≤ ‖u‖C0,α ≤ 1

so that

|u(x)− u(y)| ≤ (x− y)α

and so by Arzelá-Ascoli we are done.
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September 2011

Problem 9.1

Let (X, d) be a metric space and let (xn) be a sequence in X. For the purpose of this problem adopt the

following definition: x ∈ X is called a cluster point of (xn) iff there exists a subsequence (xnk)k≥0 such that

limk xnk = x.

(a)

Let (an)n≥0 be a sequence of distinct points in X. Construct a sequence in (xn)n≥0 in X such that

for all k = 0, 1, 2, . . . , ak is a cluster point of (xn).

(xn) = a1, a1, a2, a1, a2, a3, a1, a2, a3, a4, . . .

(b)

Can a sequence (xn) in a metric space have an uncountable number of cluster points? Prove your

answer. (If you answer yes, give an example with proof. If you answer no, prove that such a sequence

cannot exist.) You may use without proof that Q is countable and R is uncountable.

Yes. The set [0, 1] ⊂ R is uncountable, and the set [0, 1] ⊂ Q is countable and is dense in [0, 1] ⊂ R.

We can list the elements of [0, 1] ⊂ Q as a sequence:

(xn) = 0, 1, 0,
1

2
, 1, 0,

1

3
,

2

3
, 1, 0,

1

4
,

2

4
,

3

4
, 1, . . .

Every y ∈ [0, 1] ⊂ R is a cluster point of this sequence, so it has an uncountable number of cluster

points.
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Problem 9.2

Let X be a real Banach space and X∗ its Banach space dual. For any bounded linear operator T ∈ B(X),

and φ ∈ X∗, define the functional T ∗φ by

T ∗φ(x) = φ(Tx), for all x ∈ X.

(a)

Prove that T ∗ is a bounded operator on X∗ with ‖T ∗‖ ≤ ‖T‖.

T : X → X

T ∗ : X∗ → X∗

φ : X → R
T ∗φ : X → R

‖T ∗‖ = sup
‖φ‖=1

‖T ∗φ‖

= sup
‖φ‖=1

sup
‖x‖=1

|T ∗φ(x)|

= sup
‖φ‖=1

sup
‖x‖=1

|φ(Tx)|

≤ sup
‖φ‖=1

sup
‖x‖=1

‖φ‖‖Tx‖

≤ sup
‖x‖=1

‖Tx‖

≤ ‖T‖

(b)

Suppose 0 6= λ ∈ R is an eigenvalue of T . Prove that λ is also an eigenvalue of T ∗. (Hint 1:

first prove the result for λ = 1. Hint 2: For φ ∈ X∗, consider the sequence of Cesàro means

ψN = N−1
∑N
n=1 φn, of the sequence φn defined by φn(x) = φ(Tnx).)
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Problem 9.3

LetH be a complex Hilbert space and denote by B(H) the Banach space of all bounded linear transformations

(operators) on H considered with the operator norm.

(a)

What does it mean for A ∈ B(H) to be compact? Give a definition of compactness of an operator A

in terms of properties of the image on bounded sets, e.g. the set {Ax
∣∣ x ∈ H, ‖x‖ ≤ 1}.

A maps bounded sets to precompact sets.

(b)

Suppose H is separable and let {en}n≥0 be an orthonormal basis of H. For n ≥ 0, let Pn denote the

orthogonal projection onto the subspace spanned by e0, . . . , en. Prove that A ∈ B(H) is compact iff

the sequence (PnA)n≥0 converges to A in norm.

(PnA) converges to A in norm ⇒ A is compact

Choose a bounded subsequence (xn), ‖xn‖ ≤M . Consider P1A. This is a finite rank operator, so it

is compact. Therefore, we have a convergent subsequence (xn,1). Do the same for all n, then use a

diagonal argument and create a subsequence (xk,k). We want to show Axk,k converges. To do this,

we will show that it is Cauchy.

‖Axk,k −Axj,j‖ ≤ ‖Axk,k − PnAxk,k‖+ ‖PnAxk,k − PnAxj,j‖+ ‖PnAxj,j −Axj,j‖
≤ ‖A− PnA‖M + ε+ ‖PnA−A‖M → 0.

A compact ⇒ (PnA) converges to A in norm

Let E = {x
∣∣ ‖x‖ = 1}. E is bounded, so A(E) is precompact. Also, there exists a sequence (xn) ⊂ E

such that

lim
n→∞

‖(PnA−A)xn‖ = sup
‖x‖=1

‖(PnA−A)x‖ = ‖PnA−A‖.

Then

‖(PnA−A)x‖ =

∥∥∥∥∥
∞∑

k=n+1

〈ek, Ax〉 ek

∥∥∥∥∥→ 0.

This is because of Theorem 9.17, which says that if A(E) is precompact, then for every orthonormal

set {en
∣∣ n ∈ N} and every ε > 0, there is an N such that

∞∑
n=N+1

| 〈en, x〉 |2 < ε for all x ∈ A(E).
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Problem 9.4

Let Ω ∈ Rn be open, bounded, and smooth. Suppose that {fj}∞j=1 ⊂ L2(Ω) and fj ⇀ g1 weakly in L2(Ω)

and that fj(x) → g2(x) a.e. in Ω. Show that g1 = g2 a.e. (Hint: Use Egoroff’s theorem which states that

given our assumptions, for all ε > 0, there exists E ⊂ Ω such that λ(E) < ε and fj → g2 uniformly on Ec.)

(See Theorem 1.46 in Shkoller’s 201C Notes.)

Ω ⊂ Rn smooth, bounded, open. fj ⇀ g1 ∈ L2(Ω), fj(x) → g2(x) a.e. This gives us that fj converges

uniformly to g2 on the set Ec where the measure of E is less than ε. We start out with g1(x):

g1(x)
a.e.
= lim

ε→0

1

ε

∫
Bε(x)

g1(y) dy (LDT)

= lim
ε→0

lim
j→∞

1

ε

∫
Bε(x)

fj(y) dy weak convergence

= lim
ε→0

1

ε

∫
Bε(x)

g2(y) dy Egoroff’s Theorem

= g2(x).

So here’s the explaination for every step. To utilize the Lebesgue Diffrentiation Theorem all you need is

for your function to be locally summable, then the first equivalence I wrote down works a.e. The second

equivalence comes from weak convergence. The third equivalence comes from uniform convergence of fj to

g2 at any point that isn’t a singularity, which im thinking must be a.e. since if it wasnt that means g2 would

have singularities everywhere and it would be impossible for fj , an L2 function, to converge uniformly to it

on any set since uniform convergence implies L2 convergence so that on the set Ec you need g2 to be L2.

Anyways, I think all you need is to assume that there aren’t singularities a.e., which I think we’ll end up

justifying by using that on the set Ec, g2 has to be a L2 function.

For the fourth equivalence all we need to justify it is that g2 is locally summable around x, which it is because

since x isnt a singularity. We can include a neighborhood around it in the set E so that g2 is a uniform limit

of L2 functions fj so that it is also in L2, and since E is a bounded domain g2 is in L1.
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Problem 9.5

Let u(x) = (1 + | log x|)−1. Prove that u ∈W 1,1(0, 1), u(0) = 0, but u
x /∈ L1(0, 1).

(Same as March 2011, Problem 3)

First since u has no blow-up at any any points besides 0 we can conclude that if u→ 0 as x→ 0 then u ∈ L1.

lim
x→0

u(x) = lim
x→0

1

1− log(x)
=

1

1− lim
x→0

log(x)
=

1

1 +∞
= 0

Now to show that du/dx = 1
x(1−log(x))2 ∈ L

1

∫ 1

0

1

x(1− log(x))2
dx = −

∫ 1

∞
v−2 dv

=

∫ ∞
1

v−2 du

≤ ∞

so u ∈W 1,1. However u(x)/x /∈W 1,1 since∫ 1

0

u(x)

x
dx =

∫ ∞
1

v−1 dv

=∞
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Problem 9.6

Let H =
{
f ∈ L2(0, 2π)

∣∣ ∫ 2π

0
f(x) dx = 0

}
. We define the operator Λ as follows:

(Λf)(x) =

∫ x

0

f(y) dy.

(a)

Prove that Λ : H → L2(0, 2π) is continuous.

We want to show

‖Λf − Λg‖2L2 ≤ C‖f − g‖2L2 .

∫ 2π

0

(Λf − Λg)2 dx =

∫ 2π

0

∫ x

0

[f(y)− g(y)]2 dy dx

≤
∫ 2π

0

∫ 2π

0

|f(y)− g(y)|2 dy dx

≤ 2π‖f − g‖2L2

(b)

Use the Fourier series to show that the following estimate holds:

‖Λf‖H1
0 (0,2π)

≤ C‖f‖L2(0,2π),

where C denotes a constant which depends only on the domain (0, 2π). (Recall that ‖u‖2
H1

0 (0,2π)
=∫ 2π

0

∣∣du
dx (x)

∣∣2 dx.)

Cheater way: ∫ 2π

0

∣∣∣∣ ddxΛf

∣∣∣∣2 dx =

∫ 2π

0

∣∣∣∣ ddx
∫ x

0

f(y) dy

∣∣∣∣2 dx
=

∫ 2π

0

|f(x)|2 dx = ‖f‖2L2

Fourier series way:

‖DΛf‖2L2 = ‖F(DΛf)‖2L2
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Goal: find Λ̂f(n).

Λ̂f(n) =
1√
2π

∫ 2π

0

Λf(x)e−inx dx

=
1√
2π

∫ 2π

0

∫ x

0

f(y) dye−inx dx

=
1√
2π

∫ 2π

0

∫ x

0

f(y)e−inx dy dx

=
1√
2π

∫ 2π

y

∫ x

0

f(y)e−inx dx dy

=
1√
2π

∫ 2π

0

f(y) · e
−inx

−in

∣∣∣∣2π
y

dy

=
1√
2π

∫ 2π

0

f(y)

(
1

−in
+
e−iny

in

)
dy

=
1√
2π

∫ 2π

0

f(y)
e−iny

in
dy

=
f̂n
in

‖DΛf‖2L2 = ‖F(DΛf)‖2L2

=
∑
|D̂Λf(n)|2

=
∑
|inΛf(n)|2

=
∑∣∣∣∣∣in f̂(n)

in

∣∣∣∣∣
2

=
∑
|f̂(n)|2

= ‖f‖2L2
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Problem 9.7

Consider the system

ẋ = µx+ y + tanx, ẏ = x− y.

(a)

Show that a bifurcation occurs at the origin (x, y) = (0, 0), and determine the critical value µ = µc
at which the bifurcation occurs.

(b)

Determine the type of bifurcation that occurs at µ = µc. Do this (i) analytically and (ii) graphically

(sketch the appropriate phase portraits for µ slightly less than; equal to; and slightly greater than

µc).

Figure 1: ẋ = −1 · x+ y + tanx, ẏ = x− y Figure 2: ẋ = −2 · x+ y + tanx, ẏ = x− y

Page 63 of 65



Old Prelim Solutions September 2011

Figure 3: ẋ = −3 · x+ y + tanx, ẏ = x− y
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Problem 9.8

Consider the differential equation

ẍ+ x− x3 = 0,

with the initial condition x(0) = ε, ẋ(0) = 0, where ε � 1. Use “two-timing” and perturbation theory to

approximate the frequency of oscillation to order ε2.

(a)

Make a change of variables so that the differential equation is in the form z̈ + z + εh(z, ż) = 0, i.e. in

a form where ε appears naturally in the equation as a perturbation parameter.

Let z = xεc.

x = ε−cz

ẍ = ε−cz̈

x3 = ε−3cz3

ε−cz̈ + ε−cz − ε−3cz3 = 0

z̈ + z − ε−2cz3 = 0

−2c = 1

c = −1

2

z =
x√
ε

(b)

Rewrite the equation assuming two time scales, a fast time τ = t and a slow one T = ετ , and the

solution form z(t, ε) = z0(τ, T ) + εz1(τ, T ) +O(ε2).

(c)

Show that the order 0 (i.e., O(1)) solution takes the form

z0(τ, T ) = r(T ) cos(τ + φ(T )).

(d)

Use the order 1 (i.e., O(ε)) equation to determine the frequency of oscillation to order ε2. (Hint:

The order 1 (i.e., O(ε)) equation contains resonant terms, which would cause the solution to grow

without bound as t → ∞. A solution that remains bounded for large τ is obtained by setting the

coefficients of the resonant terms to zero. This yields equations that can be used to find the order

ε2 correction for the frequency of oscillation. Note: Be sure to look for “hidden” resonance terms. It

may be helpful to use the trig identity cos3(θ) = 3
4 cos(θ) + 1

4 cos(3θ).)
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