Applied $\mathrm{Ha}_{\text {h }}$
Bedim Solutions "Back of the Napkin" style

Compiled 9/13/2016 by David Haley
If you find a mistake, please send the correct solution to the author.

$$
\left.\begin{array}{c}
O(\varepsilon): \quad u_{0}^{\prime \prime}+2 u_{0}^{\prime} u_{1}^{\prime}=0 \\
\text { (t+msport) } \pm i k^{\prime} \pm 2 i k u_{1}^{\prime}=0 \\
k^{\prime}+2 k u_{1}^{\prime}=0 \\
u_{1}^{\prime}=-\frac{1}{2} \frac{k^{\prime}}{k} \\
u_{1}=D-\frac{1}{2} \ln k \\
x
\end{array}\right] \begin{gathered}
H=\exp \left(C L \pm i L \int^{\prime} k(t) d t+D-\frac{1}{2} \ln \pi\right) \\
=\frac{1}{\sqrt{k}} \exp \left(C L+D \pm i L \int^{x} k(T) d T\right. \\
h(x)=\frac{1}{\sqrt{k(x)}} \exp \left(C L+D \pm i \int^{x} k(t) d t\right) \\
=\frac{1}{\sqrt{k(x)}} \exp (C L+D) \exp \left(\pm i \int^{x} k(t) d t\right)
\end{gathered}
$$

In part (c), we are gives ins to to conclude that $\left.\left(k_{2}-k_{1}\right) \approx 0\right\}$ odd $A^{2}=\lim |h(x)|^{2}=\frac{1}{k_{1}} \exp (2 C L+2 D) \quad k(t) \sim k_{1}$, question?

$$
A^{2}=\lim _{x \rightarrow-\infty}|\operatorname{lh}(x)|^{2}=\frac{1}{k_{1}} \exp (2 C L+2 D)
$$

$$
\therefore h(x)=A \exp (i k, x)
$$

$$
\begin{aligned}
& \text { FOl3 \#1 } \\
& h^{\prime \prime}+k^{2} h=0 \\
& k=k(x)=k_{1}+\left(k_{2}-k_{1}\right) \tanh \left(\frac{x}{L}\right) \quad 0<k_{1}<k_{2} \\
& X=\frac{x}{L} \quad K(X)=k(x) \quad H(X):=h(x) \\
& \frac{1}{L^{2}} H^{\prime \prime}+X^{2} H=0 \\
& H=\exp \left(L u_{0}+u_{1}\right) \\
& \frac{1}{L^{2}}\left[\left(L u_{0}^{\prime \prime \prime} u_{1}^{\prime \prime}\right)+\left(L u_{0}^{\prime}+u_{1}^{\prime}\right)^{2}\right]+\mathcal{K}^{2}=0 \\
& \begin{array}{l}
A=\sec (1) \quad O(1): \quad\left(u_{0}^{\prime}\right)^{2}+\pi^{2}=0 \\
x \rightarrow i x
\end{array} \\
& \text { (eikonal) } \\
& u_{0}^{\prime}= \pm i k_{x} \\
& u_{0}=C \pm i \int^{x} z(t) d t
\end{aligned}
$$

$F^{\prime} 013$ \# 2

$$
\varepsilon y^{\prime \prime}+\sqrt{x} y^{\prime}+y=0
$$

$$
\begin{gathered}
y(0)=0, y(1)=1 \\
\text { INNER SOLUTION } \\
:=\varepsilon^{\alpha} X
\end{gathered}
$$

$$
\text { Let } \quad x:=\varepsilon^{\alpha} X, Y(X):=y(x)
$$

$$
\varepsilon^{1-2 \alpha} Y^{\prime \prime}+\varepsilon^{-\frac{1}{2} \alpha} \sqrt{X} Y^{\prime}+Y=0, Y(0)=0
$$

$$
\begin{gathered}
1-2 \alpha=-\frac{1}{2} \alpha \\
1=\frac{3}{2} \alpha \\
\frac{2}{3}=\alpha
\end{gathered}
$$

$$
\alpha:=\frac{2}{3}
$$

$$
\varepsilon^{-\frac{1}{3}} Y^{\prime \prime}+\varepsilon^{-\frac{1}{3}} \sqrt{x} Y^{\prime}+Y=0
$$

$$
Y^{\prime \prime}+\sqrt{x} y^{\prime}+\varepsilon^{\frac{1}{3}} y=0
$$

$O(1): \quad Y^{\prime \prime}+\sqrt{x} y^{\prime}=0$

$$
\frac{y^{\prime \prime}}{y^{\prime}}=-\sqrt{x}
$$

$$
\begin{aligned}
& y^{\prime}=-\frac{2}{3} x^{3 / 2}+c \\
& \ln Y^{\prime}=-\frac{2}{3} x^{3 / 2}
\end{aligned}
$$

$$
Y^{\prime}=c e^{-\frac{2}{3}}
$$

$$
Y=c \int_{0}^{x} e^{-\frac{2}{3} x^{\frac{3}{2}}} d x+d
$$

$$
\begin{aligned}
Y(0)=0 \Rightarrow & d=0 \\
& \therefore Y=c \int_{0}^{x} e^{-\frac{2}{3} t^{3}-2} d t
\end{aligned}
$$

outer solution

$$
\begin{aligned}
\sqrt{x} y^{\prime}+y & =0 \quad y(1)=1 \\
\frac{y^{\prime}}{y} & =-\frac{1}{\sqrt{x}} \\
\ln y & =-2 \sqrt{x}+a \\
y & =a e^{-2 \sqrt{x}}
\end{aligned}
$$

$$
\begin{gathered}
y=a e \\
1=y(1)=a e^{-2} \Rightarrow a=e^{2}
\end{gathered}
$$

$$
1=y(1)=a e_{2-2 \sqrt{x}} \Rightarrow
$$

$$
\therefore y(x)=e^{2-2+x}
$$

$$
\begin{gathered}
\text { MATCH } \\
\lim _{X \rightarrow \infty} Y(X)=\lim _{x \rightarrow 0^{+}} y(x) \\
C \int_{0}^{\infty} e^{-\frac{2}{3} t^{\frac{t}{4}}} d t=e^{2} \\
c=\frac{e^{2}}{\int_{0}^{\infty} e^{-\frac{2}{3} t^{2}}} d t
\end{gathered}
$$

3) $u(r, t)=R(r) T(t)$
a)

$$
\begin{aligned}
& R T^{\prime \prime}=a^{2} R^{\prime \prime} T+\frac{a^{2}}{r} R^{\prime} T \\
& \frac{T^{\prime \prime}}{T}=a^{2} \frac{R^{\prime \prime}}{R}+\frac{a^{2}}{\sigma} \frac{R^{\prime}}{R}
\end{aligned}
$$

$\frac{T^{\prime \prime}}{T}=-\lambda^{2}$ (because soln's must oscillate)

$$
\begin{aligned}
& a^{2} \frac{R^{\prime \prime}}{R}+\frac{a^{2}}{r} \frac{R^{\prime}}{R}=-\lambda^{2} \\
& R^{\prime \prime}+\frac{1}{r} R^{\prime}+\frac{\lambda^{2}}{a^{2}} R=0 \\
& \frac{1}{P}\left(P R^{\prime}\right)^{\prime}=\frac{P R^{\prime \prime}}{P}+\frac{P^{\prime} R^{\prime}}{P} \quad P=r \\
& \frac{1}{r}\left(r R^{\prime}\right)^{\prime}+\left(\frac{\lambda}{a}\right)^{2} R=0
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{1}{r}\left(r R^{\prime}\right)^{\prime}+\left(\frac{\lambda}{a}\right)^{2} R=0 \\
& \frac{1}{x}\left(x J_{n}^{\prime}\right)^{\prime}+\left(1-\frac{n^{2}}{x^{2}}\right) J_{n}=0 \quad \text { Bessel }
\end{aligned}
$$

$$
\begin{aligned}
J_{0}: & n=0 \\
& \frac{1}{x}\left(x J_{0}^{\prime}\right)^{\prime}+J_{0}=0 \\
r & =x \frac{a}{\lambda} \quad R(r)=J_{0}\left(\frac{\lambda r}{a}\right) \\
R\left(r_{0}\right) & =0=J_{0}\left(\frac{\lambda r_{0}}{a}\right)
\end{aligned}
$$

Zeros of Bessel $J_{0}\left(x_{i}\right)=0$

$$
\begin{gathered}
\frac{\lambda_{i} r_{0}}{a}=x_{i} \quad \lambda_{i}=\frac{a x_{i}}{r_{0}} \\
R_{i}(r)=J_{0}\left(\frac{\lambda_{i} r}{a}\right)=J_{0}\left(\frac{x_{i} r}{r_{0}}\right)=R_{i}(r)
\end{gathered}
$$

F'O13 \# 4 (pat 1)

$$
\begin{aligned}
& f^{\prime \prime}+\lambda f=0 \\
& f^{\prime}(0)=f(l)=0
\end{aligned}
$$

$$
C_{\text {lain }} \lambda>0
$$

Pf/

$$
\begin{aligned}
& 0< \frac{\int_{0}^{l}\left(f^{\prime}\right)^{2} d x}{\int_{0}^{l} f^{2} d x}=\frac{-\int_{0}^{l} f f^{\prime \prime} d x+\left[f f^{\prime}\right]_{0}^{l}}{\int_{0}^{l} f^{2} d x} \\
&=\frac{-\int_{0}^{l} f(-\lambda f) d x \lambda \int_{0}^{l} f^{2} d x}{\int_{0}^{2} f^{2} d x}=\lambda \\
& \iint_{0}^{l} f^{2} d x
\end{aligned}
$$

Wog $k+\lambda=\frac{\pi^{2} n^{2}}{4 l^{2}}, n \in \mathbb{R}$.

$$
f^{\prime \prime}+\frac{\pi^{2} n^{2}}{\pi \ell^{2}}=0
$$

soled by $f(x)=a \cos \frac{\pi n}{2 l} x+b \sin \frac{\pi n}{2 l} x$

$$
\begin{aligned}
\text { by } f(x) & =a \cos 2 l \\
0=f(l) & =a \cos \frac{\pi^{n}}{}+b \sin \frac{\pi n}{2} \\
& =a \cos \frac{\pi^{n} n}{2} \quad \Rightarrow a=0 \cdot n \in 2 \pi-1
\end{aligned}
$$

$$
0=f^{\prime}(0)=-\frac{\pi n a}{2 l} \sin \frac{\pi m}{2 l} 0+\frac{\pi n b}{2 l} \cos \frac{\pi m}{2 l} 0
$$

$$
=\frac{\pi m b}{2 l} \Rightarrow b=0 \text {. }
$$

$f(x)=0$ or $f(x)=a \cos \frac{\pi(2 k-1)}{2 l} x, k \in \mathbb{N}$
Normalize: $a^{2} \int_{0}^{\frac{1}{2}} \cos ^{2} \frac{\pi(2 x-1)}{24} x d x=\frac{l}{2} a^{2}=1 \Rightarrow a=\sqrt{\frac{2}{l}}$
eigenvalue: $\lambda_{k}=\frac{\lambda^{2}(2 k-1)^{2}}{4 \ell^{2}}, k \in \mathbb{N}$
unerfuction: $\sqrt{\frac{2}{l}} \cos \frac{\pi(2 k-1)}{2 l} x$
$F^{\prime} 013 \#^{4}\left(P_{w}+2\right)$
approximate $l^{2}-x^{2}$ with

$$
\left\{Q_{k}\right\}=\left\{\sqrt{\frac{2}{l}} \cos \frac{\pi(2 k-1)}{2 l} \times\right\}
$$

project: $\left.g \mapsto \sum_{k=1}^{\infty}<\varphi_{k}, g\right\rangle \varphi_{k}$. Let $k:=\frac{\pi\left(v_{k}-1\right)}{2 l}$

$$
\begin{aligned}
\left\langle\varphi_{k, g}\right\rangle & =\sqrt{\sqrt{\frac{2}{l}}} \int_{0}^{l}\left(l^{2}-x^{2}\right) \cos k x d x \\
& =\sqrt[4]{\frac{2}{l}} \sqrt{\left[-\frac{x^{2}}{k} \sin k x-\frac{2 x}{k^{2}} \cos \pi x+\frac{2}{k^{3}} \sin \pi x\right]_{0}^{l}} \\
& =\sqrt[4]{\frac{2}{l}} \sqrt{-\frac{x^{2}}{k}(-1)^{k+1}+\frac{2}{k^{3}}(-1)^{k+1}+\frac{2 x}{k^{2}}}
\end{aligned}
$$

(put these pieces together for answer)

$$
\begin{gathered}
\text { Foo }^{\prime} 013=5 \quad \text { Page } 1 \\
\dot{x}=a x+y-x f\left(x^{2}+y^{2}\right) \quad a \in \mathbb{R}, f \in c^{0}, f(0)=0, f(a) \geq u^{1 / 2} \\
\dot{y}=-x+a y-y f\left(x^{2}+y^{2}\right) \quad \\
\begin{aligned}
2 x \dot{x}+2 y \dot{y} & =2 a x^{2}+2 x y-x^{2} f\left(x^{2}+y^{2}\right)-2 x y+2 a y^{2}-y^{2} f\left(x^{2}+y^{2}\right) \\
= & 2 a\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}\right) f\left(x^{2}+y^{2}\right)=\left(x^{2}+y^{2}\right)\left[2 a-f\left(x^{2}+y^{2}\right)\right]
\end{aligned}
\end{gathered}
$$

fixed points:

$$
\begin{aligned}
& 2 x(0)+2 y(0)=\left(x^{2}+y^{2}\right)\left[2 a-f\left(x^{2}+y^{2}\right)\right] \\
& x^{2}+y^{2}=0 \quad \text { or } \quad f\left(x^{2}+y^{2}\right)=2 a \\
& (0,0) \quad \text { mind imply } 0=\dot{x}=a x+y-2 a x=y-a x \\
& \angle 0=\dot{y}=-x+a y-2 a y=-x-a y
\end{aligned}
$$

$\therefore y=a x$ and $x=-a y$

$$
\therefore \quad \begin{aligned}
& y=-a^{2} y \\
& y=0, x=0
\end{aligned}
$$

\therefore only fixed ρ^{t} : $(0,0)$
Linear stability: $J(x, y)=\left[\begin{array}{ll}a-f\left(x^{2}+y^{2}\right)-2 x^{2} f^{\prime}\left(x^{2}+y^{2}\right) & 1-2 x y f\left(x^{2}+y^{2}\right) \\ -1-2 x y f\left(x^{2}+y^{2}\right) & a^{-} f\left(x^{2}+y^{2}\right)-y^{2} f^{2}\left(x^{2} y^{2}\right)\end{array}\right]$
assure $f \in C^{\prime}$

$$
\begin{aligned}
J(0,0) & =\left[\begin{array}{rr}
a & 1 \\
-1 & a
\end{array}\right] \\
\lambda & =a \pm i
\end{aligned}
$$

stable spiral for a <0 unstable spiral for $a>0$

$$
\text { F'O13 \#5 Page } 2
$$

We have that $(0,0)$ is the only fired p^{t} and it is a spemisomic for a 30 . Now recall $2 x \dot{x}+2 y \dot{y}=\left(x^{2}+y^{2}\right)\left[2 a-f\left(x^{2}+y^{2}\right)\right]$

$$
\Rightarrow \quad \frac{d}{d t}\left[x^{2}+y^{2}\right]=\left(x^{2}+y^{2}\right)\left[2 a-f\left(x^{2}+y^{2}\right)\right]
$$

Consider the cioriegion bod by $x^{2}+y^{2}=9 a^{2}$ with the neigh be hared of (0,0) On the outer body of this region,

$$
\begin{aligned}
\frac{d}{d t}\left[x^{2}+y^{2}\right] & =\left(x^{2}+y^{2}\right)\left[2 a-f\left(x^{2}+y^{2}\right)\right] \\
& =9 a^{2}\left[2 a-f\left(9 a^{2}\right)\right] \\
& \leq 9 a^{2}[2 a-3 a] \\
& =-9 a^{3}
\end{aligned}
$$

$$
<0 \text {. } \quad \therefore \text { all trajectories flow intend }
$$

On the inner boy of this ngion, all tajectures flow had (spalsame afro, $)$
There are no fixed pts inside the region.
\therefore By P-B a limit cycle must exist.
Special case: $f(u)=u^{1 / 2}$.

$$
\begin{array}{r}
0=\frac{d}{d t}\left[x^{2}+y^{2}\right]=\left(x^{2}+y^{2}\right)\left[2 a-f\left(x^{2}+y^{2}\right)\right] \\
0=x^{2}+y^{2} \quad \text { or } \quad 0=2 a-f\left(x^{2}+y^{2}\right) \\
\text { notinregien } \\
2 a=f\left(x^{2}+y^{2}\right) \\
2 a=\sqrt{x^{2}+y^{2}} \\
4 a^{2}=x^{2}+y^{2}
\end{array}
$$

$$
\begin{aligned}
& F^{\prime} O 13 \# 6 \\
& \frac{d^{2} r}{d \theta^{2}}+r=\frac{1}{l}+\varepsilon l_{r}^{2} \\
& \frac{d r}{d \theta}:=s \\
& \frac{d s}{d \theta}=-r+\frac{1}{L}+\varepsilon l_{r}^{2}
\end{aligned}
$$

fixed pts: $\left\{\begin{array}{l}0=5 \\ 0=-r+\frac{1}{L}+\varepsilon L_{r}{ }^{2}\end{array}\right.$

$$
\begin{aligned}
& \varepsilon L r^{2}-r+\frac{1}{L}=0 \\
& \quad r=\frac{1 \pm \sqrt{1-4 \varepsilon}}{2 \varepsilon L} \\
& J(r, s)=\left[\begin{array}{cc}
0 & 1 \\
-1+2 \varepsilon L r & 0
\end{array}\right] \\
& J\left(\frac{1 \pm \sqrt{1-4 \varepsilon}}{2 \varepsilon L}, 0\right)=\left[\begin{array}{cc}
0 & 1 \\
\pm \sqrt{1-4 \varepsilon} & 0
\end{array}\right]
\end{aligned}
$$

saddle at $\left(\frac{1+\sqrt{1-4 \varepsilon}}{2 \varepsilon L}, 0\right)$ as $\varepsilon \rightarrow 0^{+}:(\infty, 0)$
 s

