Problem 1) a) Fact: If X is a compact space, and $f: X \rightarrow Y$ is continuous, then $f(X)$ is compact. Therefore, since $(0,1)$ is not compact, no such f exists.
b) Let $f:(0,1) \rightarrow[0,1]$ be given by $f(x)=\sin (4 \pi x)$. Then f is both continuous and onto.

Problem 2. We let x_{i} denote the i-th Fibonacci number. That is,

$$
\begin{aligned}
x_{1} & =x_{2}=1 \\
x_{n+1} & =x_{n}+x_{n-1}, \quad n=2,3, \ldots
\end{aligned}
$$

Finally, define

$$
r_{n}=\frac{x_{n+1}}{x_{n}}
$$

Then,
$\lim _{n \rightarrow \infty} r_{n}=\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\lim _{n \rightarrow \infty}\left(\frac{x_{n}+x_{n-1}}{x_{n}}\right)=\lim _{n \rightarrow \infty}\left(1+\frac{x_{n-1}}{x_{n}}\right)=1+\frac{1}{\lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n-1}}}$.
There are two ways to finish this problem: The first uses the above with elementary analysis. The second proof uses the Contraction Mapping Theorem:

1. Continuing, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=1+\frac{1}{\lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n-1}}} \tag{1}
\end{equation*}
$$

Let L denote this quantity ${ }^{1}$:

$$
L=\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} .
$$

Then one also has

$$
L=\lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n-1}} .
$$

By applying the assignments of L into (1), we have

$$
L=1+\frac{1}{L} .
$$

[^0]2. In the second proof, by rewriting the work above without limits, we have
$$
r_{n}=1+\frac{1}{r_{n-1}}
$$

Based on this formula, we define the map T

$$
\begin{equation*}
T(x)=1+\frac{1}{x} . \tag{2}
\end{equation*}
$$

By computing the first several elements of the sequence $\left\{r_{i}\right\}_{i=1}^{\infty}$ by hand, we note that $r_{n} \geq \frac{3}{2}$ for $n \geq 3$. Thus, we'll take the rule (2) above for T and define T as a map on the following domain and codomain

$$
T:\left[\frac{3}{2}, \infty\right) \rightarrow\left[\frac{3}{2}, \infty\right)
$$

We bound the value $\|T(x)-T(y)\|$ for arbitrary $x, y \in X$ as follows:

$$
\begin{aligned}
\|T(x)-T(y)\| & =\left\|1+\frac{1}{x}-\left(1+\frac{1}{y}\right)\right\| \\
& =\left\|\frac{y-x}{x y}\right\| \\
& \leq \frac{4}{9}\|x-y\|
\end{aligned}
$$

Since $X=\left[\frac{3}{2}, \infty\right)$ is a complete metric space, the function $T: X \rightarrow X$ is a contraction. By the Contraction Mapping Theorem, T has a unique fixed point $L \in X$. That is,

$$
L=1+\frac{1}{L} .
$$

The branching of solutions is done. In either method, one obtains $L^{2}=$ $L+1$, thus $L^{2}-L-1=0$. By using the quadratic equation we get

$$
L=\frac{1 \pm \sqrt{5}}{2}
$$

though the root $\frac{1}{2}(1-\sqrt{5})$ is negative. We conclude (since all the terms in the Fibonacci sequence are positive) that

$$
L=\frac{1+\sqrt{5}}{2}=\phi
$$

Problem 3) Define a sequence $\left(x_{n}\right)$ such that $x_{n} \in F_{n}, \forall n$. Then $\left(x_{n}\right)$ is Cauchy, since given any $\epsilon>0$, we can pick $N \in \mathbf{N}$ such that $\operatorname{diam}\left(F_{N}\right)<\epsilon$. Then for $m, n>=N$, we have $x_{n}, x_{m} \in F_{N}$, so

$$
d\left(x_{n}, x_{m}\right) \leq \sup \left\{d(x, y): x, y \in F_{N}\right\} \leq \epsilon
$$

Since X is complete, $\left(x_{n}\right)$ has a limit point x in X.
Claim: $x \in \bigcap_{n=1}^{\infty} F_{n}$
Proof of claim: Suppose not. Then $\exists M \in \mathbf{N}$ such that $x \notin F_{M}$. Then $x \notin F_{n}, \forall n \geq M$, by the inclusion property of the F_{n}. The tail of $\left(x_{n}\right)$, for $n \geq M$, is contained in F_{M+1}. So $\left(x_{n}\right)$ is a sequence in F_{M+1} such that $x_{n} \rightarrow x$. But F_{M+1} is closed, so $x \in F_{M+1}$, which is a contradiction. Therefore, $\bigcap_{n=1}^{\infty} F_{n}$ is nonempty.

Now to show x is unique. Suppose $x, y \in \bigcap_{n=1}^{\infty} F_{n}$, and $x \neq y$. Then $d(x, y)=c>0$. By definition of the F_{n}, there is an N such that $\operatorname{diam}\left(F_{N}\right)<$ c. Then not both x and y can lie in F_{N}, which is a contradiction. Therefore, $\bigcap_{n=1}^{\infty} F_{n}=\{x\}$.
Problem 4) If $f=g$, then clearly $f * f=\frac{1}{2}(f * f+f * f)$. Suppose that $f * g=\frac{1}{2}(f * f+g * g)$. Then we can look at the Fourier coefficients to get $\left.\hat{f}_{n} \hat{g}_{n}=\frac{1}{2}\left(\hat{f}_{n}^{2}+\hat{g}_{n}^{2}\right) \Rightarrow \hat{f}_{n}-\hat{g}_{n}\right)^{2}=0 \Rightarrow \hat{f}_{n}=\hat{g}_{n} \Rightarrow f=g$.
Problem 5) Compact in \mathcal{H} is the same as sequentially compact because \mathcal{H} is (among other things) a metric space. So when do arbitrary subsequences of $\left\{a_{k} u_{k}\right\}$ have convergent subsequences? Claim: need $\left|a_{k}\right| \rightarrow 0$. Suppose first that $\left|a_{k}\right| \nrightarrow 0$. Then $\exists \epsilon>0$ s.t. $\forall N \in \mathbb{N}, \exists k>N$ s. t. $\left|a_{k}\right|>\epsilon$. Then define a subsequence $\left\{a_{k_{i}} u_{k_{i}}\right\}$ by picking k_{i} such that $\left|a_{k_{i}}\right|>\epsilon \forall k_{i}$. Then:

$$
\begin{aligned}
\left\|a_{k_{i}} u_{k_{i}}-a_{k_{j}} u_{k_{j}}\right\|^{2} & =\left\langle a_{k_{i}} u_{k_{i}}-a_{k_{j}} u_{k_{j}}, a_{k_{i}} u_{k_{i}}-a_{k_{j}} u_{k_{j}}\right\rangle \\
& =\left\|a_{k_{i}} u_{k_{i}}\right\|^{2}+\left\|a_{k_{j}} u_{k_{j}}\right\|^{2} \\
& =\left|a_{k_{i}}\right|^{2}+\left|a_{k_{j}}\right|^{2}>2 \epsilon^{2}>0
\end{aligned}
$$

since $\left\langle u_{k_{i}}, u_{k_{j}}\right\rangle=0$. So any subsequence of this sequence is not Cauchy and therefore cannot converge.
Now suppose $\left|a_{k}\right| \rightarrow 0$. Let $\left\{a_{k_{i}} u_{k_{i}}\right\}$ be an arbitrary subsequence. Then the same calculation as above shows that $\left\|a_{k_{i}} u_{k_{i}}-a_{k_{j}} u_{k_{j}}\right\|=\left|a_{k_{i}}\right|^{2}+\left|a_{k_{j}}\right|^{2} \rightarrow 0$. So the sequence is Cauchy and thus converges.

[^0]: ${ }^{1}$ Note, we assume that this limit exists, though perhaps on an exam, we should prove this!!

