
Problem 1) a) Fact: If X is a compact space, and f : X → Y is continu-
ous, then f(X) is compact. Therefore, since (0, 1) is not compact, no such f
exists.
b) Let f : (0, 1) → [0, 1] be given by f(x) = sin(4πx). Then f is both contin-
uous and onto.

Problem 2. We let xi denote the i-th Fibonacci number. That is,

x1 = x2 = 1

xn+1 = xn + xn−1, n = 2, 3, . . .

Finally, define

rn =
xn+1

xn

.

Then,

lim
n→∞

rn = lim
n→∞

xn+1

xn

= lim
n→∞

(
xn + xn−1

xn

)
= lim

n→∞

(
1 +

xn−1

xn

)
= 1 +

1

limn→∞
xn

xn−1

.

There are two ways to finish this problem: The first uses the above with
elementary analysis. The second proof uses the Contraction Mapping Theo-
rem:

1. Continuing, we have

lim
n→∞

xn+1

xn

= 1 +
1

limn→∞
xn

xn−1

. (1)

Let L denote this quantity1:

L = lim
n→∞

xn+1

xn

.

Then one also has
L = lim

n→∞

xn

xn−1

.

By applying the assignments of L into (1), we have

L = 1 +
1

L
.

1Note, we assume that this limit exists, though perhaps on an exam, we should prove
this!!
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2. In the second proof, by rewriting the work above without limits, we
have

rn = 1 +
1

rn−1

.

Based on this formula, we define the map T

T (x) = 1 +
1

x
. (2)

By computing the first several elements of the sequence {ri}∞i=1 by hand,
we note that rn ≥ 3

2
for n ≥ 3. Thus, we’ll take the rule (2) above for

T and define T as a map on the following domain and codomain

T :

[
3

2
,∞

)
→

[
3

2
,∞

)
.

We bound the value ‖T (x)− T (y)‖ for arbitrary x, y ∈ X as follows:

‖T (x)− T (y)‖ =

∥∥∥∥1 +
1

x
−

(
1 +

1

y

)∥∥∥∥
=

∥∥∥∥y − x

xy

∥∥∥∥
≤ 4

9
‖x− y‖.

Since X =
[

3
2
,∞

)
is a complete metric space, the function T : X → X

is a contraction. By the Contraction Mapping Theorem, T has a unique
fixed point L ∈ X. That is,

L = 1 +
1

L
.

The branching of solutions is done. In either method, one obtains L2 =
L + 1, thus L2 − L− 1 = 0. By using the quadratic equation we get

L =
1±

√
5

2

though the root 1
2
(1 −

√
5) is negative. We conclude (since all the terms in

the Fibonacci sequence are positive) that

L =
1 +

√
5

2
= φ.
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Problem 3) Define a sequence (xn) such that xn ∈ Fn,∀n. Then (xn) is
Cauchy, since given any ε > 0, we can pick N ∈ N such that diam(FN) < ε.
Then for m, n >= N , we have xn, xm ∈ FN , so

d(xn, xm) ≤ sup{d(x, y) : x, y ∈ FN} ≤ ε

Since X is complete, (xn) has a limit point x in X.

Claim: x ∈
⋂∞

n=1 Fn

Proof of claim: Suppose not. Then ∃M ∈ N such that x /∈ FM . Then
x /∈ Fn, ∀n ≥ M , by the inclusion property of the Fn. The tail of (xn),
for n ≥ M , is contained in FM+1. So (xn) is a sequence in FM+1 such that
xn → x. But FM+1 is closed, so x ∈ FM+1, which is a contradiction. There-
fore,

⋂∞
n=1 Fn is nonempty.

Now to show x is unique. Suppose x, y ∈
⋂∞

n=1 Fn, and x 6= y. Then
d(x, y) = c > 0. By definition of the Fn, there is an N such that diam(FN) <
c. Then not both x and y can lie in FN , which is a contradiction. Therefore,⋂∞

n=1 Fn = {x}.
Problem 4) If f = g, then clearly f ∗ f = 1

2
(f ∗ f + f ∗ f). Suppose that

f ∗ g = 1
2
(f ∗ f + g ∗ g). Then we can look at the Fourier coefficients to get

f̂nĝn = 1
2
(f̂ 2

n + ĝ2
n) ⇒ f̂n − ĝn)2 = 0 ⇒ f̂n = ĝn ⇒ f = g.

Problem 5) Compact in H is the same as sequentially compact because H is
(among other things) a metric space. So when do arbitrary subsequences of
{akuk} have convergent subsequences? Claim: need |ak| → 0. Suppose first
that |ak| 9 0. Then ∃ε > 0 s.t. ∀N ∈ N,∃k > N s. t. |ak| > ε. Then define
a subsequence {aki

uki
} by picking ki such that |aki

| > ε∀ki. Then:

||aki
uki

− akj
ukj
||2 = 〈aki

uki
− akj

ukj
, aki

uki
− akj

ukj
〉

= ||aki
uki
||2 + ||akj

ukj
||2

= |aki
|2 + |akj

|2 > 2ε2 > 0

since 〈uki
, ukj

〉 = 0. So any subsequence of this sequence is not Cauchy and
therefore cannot converge.
Now suppose |ak| → 0. Let {aki

uki
} be an arbitrary subsequence. Then the

same calculation as above shows that ||aki
uki

− akj
ukj
|| = |aki

|2 + |akj
|2 → 0.

So the sequence is Cauchy and thus converges.
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