Problem 1. A function $f: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}^{\mathbf{n}}$ is said to be a C^{∞}-function if f has continuous partial derivatives of all orders.
(a) Consider the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=\exp \left[1 /\left(x^{2}-1\right)\right]$ if $|x|<1$ and $f(x)=0$ if $|x| \geq 1$. Show that f is a C^{∞}-function such that $\operatorname{supp}(f)=[-1,1]$. (Induction and L'Hospital's rule are needed here.)
(b) For $\epsilon>0$ and $a \in \mathbf{R}$, show that the function $g(x)=f[(x-a) / \epsilon]$ is also a C^{∞}-function with $\operatorname{supp}(g)=[a-\epsilon, a+\epsilon]$.
Solution:

Problem 2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be integrable with respect to the Lebesgue measure. Show that the function $g:[0, \infty) \rightarrow \mathbf{R}$ defined by

$$
g(t)=\sup \left\{\int|f(x+y)-f(x)| d x:|y|<t\right\}
$$

for $t \geq 0$ is continuous at $t=0$.
Solution: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be integrable with respect to Lebesgue measure, and let g be given as above. Let $\epsilon>0$ be given. Then there exists a simple function ϕ such that $\phi \leq f$ and $\int|f-\phi|<\frac{\epsilon}{2}$. Since ϕ is simple, $\phi=\left(k \chi_{[0, r]}+\right.$ other indicator functions), for some $r \in \mathbf{R}$. Then

$$
|f(x+y)-f(x)| \leq|f(x+y)-\phi(x+y)|+|\phi(x+y)-\phi(x)|+|\phi(x)-f(x)|
$$

Pick δ such that $0<\delta<r$. Then for $0 \leq t<\delta$, we have

$$
\begin{aligned}
|g(t)| & =\sup \left\{\int|f(x+y)-f(x)| d x:|y| \leq t\right\} \\
& \leq \sup \left\{\int|f(x+y)-\phi(x+y)|+\int|\phi(x+y)-\phi(x)|+\int|\phi(x)-f(x)|:|y| \leq \delta\right\}
\end{aligned}
$$

$\int|\phi(x+y)-\phi(x)|=0$ for all $|y| \leq \delta$ since for y in the interval $[0, r], \phi(x+y)=$ $\phi(x)$. Also, $\int|f(x+y)-\phi(x+y)|=\int|f(x)-\phi(x)|<\frac{\epsilon}{2}$, independent of y. Therefore, the entire right hand side above is $<\epsilon$. Since $g(0)=0, g$ is continuous at 0 .

Problem 3. Consider the following theorem:
Let $1 \leq p<\infty$ and $f \in L^{p}$, and let $\left\{f_{n}\right\}$ be a sequence in L^{p} such that $f_{n} \rightarrow f$ a.e. If $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{p}}=\|f\|_{L^{p}}$, then $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{p}}=0$.
Show by an example that this theorem is false when $p=\infty$.
Solution: Let $f_{n}=\chi_{[-2,-1]}+\chi_{[n, \infty)}$. Then $f_{n} \rightarrow f=\chi_{[-2,-1]}$ a.e. $\left\|f_{n}\right\|_{\infty}=1$, $\|f\|_{\infty}=1$, but $\left\|f_{n}-f\right\|_{\infty}=1, \forall n$.

Problem 4. On $C^{0}([0,1])$ consider the two norms

$$
\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|, \quad\|f\|_{1}=\int_{0}^{1}|f(x)| d x
$$

Solution:

Problem 5. Let \mathcal{H} be a Hilbert space. for a subset A of \mathcal{H}, let A^{\perp} denote the orthogonal complement of A.
(a) Prove that for any subset $A,\left(A^{\perp}\right)^{\perp}$ is the closed linear span of A.
(b) Prove that if A is a closed convex subset of \mathcal{H}, then A contains a unique element of minimal norm.

Solution: (a): Let a lie in the linear span of A. By linearity of the inner product, $\left\langle a, x>=0 \forall x \in A^{\perp}\right.$. Therefore, by the definition of $\left(A^{\perp}\right)^{\perp}, a \in\left(A^{\perp}\right)^{\perp}$. Now if a lies in the closed linear span of A, then by continuity of $<,>$ we also have $<a, x>=0$ for all $x \in A$, so $a \in\left(A^{\perp}\right)^{\perp}$. So we have that the closed linear span of A is contained in $\left(A^{\perp}\right)^{\perp}$. Next, since the closed linear span of A (denoted $<A>$ from now on) is in fact closed, we have $\mathcal{H}=<A>\oplus<A>^{\perp}$. We have $<A>^{\perp}=A^{\perp}$ since if $<y, a>=0$ for all $a \in A$, then $<y, a^{\prime}>=0$ for all $a^{\prime} \in A$ by linearity and continuity. So $\mathcal{H}=<A>\oplus A^{\perp}$. Now let $a \in\left(A^{\perp}\right)^{\perp}$. Then $a=a_{1}+a_{2}$, where $a_{1} \in<A>$, and $a_{2} \in A^{\perp}$. Since $a \in\left(A^{\perp}\right)^{\perp},<a, x>=0$ for all $x \in A^{\perp}$. Therefore, $\left\langle a_{1}, x>+<a_{2}, x>=0\right.$ for all $x \in A^{\perp}$. Let $x=a_{2} \in A^{\perp}$. Then $<a_{1}, a_{2}>+<a_{2}, a_{2}>=0$. Since $a_{1} \in<A>$ and $a_{2} \in A^{\perp},<a_{1}, a_{2}>=0$. Therefore, $<a_{2}, a_{2}>=\left\|a_{2}\right\|^{2}=0 \Rightarrow a_{2}=0$. Therefore, $a \in<A>$. Therefore, $\left(A^{\perp}\right)^{\perp}=<A>$.
(b) Let A be closed and convex. Let $d=\inf \{\|a\|: a \in A\}$. Then $\exists a_{n} \in A$ such that $\lim _{n \rightarrow \infty}\left\|a_{n}\right\|=d$, so for all $\epsilon>0$, there is an N such that $\left\|a_{n}\right\| \leq d+\epsilon$. Claim: a_{n} is Cauchy. Proof:

$$
\left\|a_{n}-a_{m}\right\|^{2}=2\left\|a_{n}\right\|^{2}+2\left\|a_{m}\right\|^{2}-\left\|a_{n}+a_{m}\right\|^{2}
$$

by the parallelogram law. Since A is convex, $\frac{a_{n}+a_{m}}{2} \in A \Rightarrow \frac{\left\|a_{n}+a_{m}\right\|}{2} \geq d$. So

$$
\begin{aligned}
\left\|a_{n}-a_{m}\right\|^{2} & \leq 2(d+\epsilon)^{2}+2(d+\epsilon)^{2}-4 d^{2} \\
& =8 d \epsilon+4 \epsilon^{2} \\
& =\epsilon(8 d+4 \epsilon)
\end{aligned}
$$

So a_{n} is Cauchy.
Therefore, $\left(a_{n}\right)$ converges, and since A is closed, $a_{n} \rightarrow a \in A$. Suppose now that $\left\|a^{\prime}\right\|=d$. Then $\left\|a-a^{\prime}\right\|^{2}=2\|a\|^{2}+2\left\|a^{\prime}\right\|^{2}-\left\|a+a^{\prime}\right\|^{2}$. $\frac{a+a^{\prime}}{2} \in A \Rightarrow\left\|a+a^{\prime}\right\| \geq 2 d$. So then $\left\|a-a^{\prime}\right\|^{2} \leq 2 d^{2}+2 d^{2}-4 d^{2} \leq 0 \Rightarrow a=a^{\prime}$.

Problem 6. Let \mathcal{H} be a Hilbert space and $X=X^{*} \in \mathcal{B}(\mathcal{H})$ be compact and such that

$$
\frac{1}{3} X^{3}-X^{2}+\frac{2}{3} X=0
$$

$(\mathcal{B}(\mathcal{H})$ is the bounded linear operators on $\mathcal{H})$
(a) Prove that X can be written as the sum of two orthogonal projections, i.e., there exists orthogonal projections P and Q, such that $X=P+Q$.
(b) Explain why any two orthogonal projections P and Q such that $X=P+Q$, are necessarily of finite rank?

Solution: (a)

$$
\frac{1}{3} X^{3}-X^{2}+\frac{2}{3} X=0 \Rightarrow X(X-1)(X-2)=0
$$

Therefore, the only nonzero eigenvalues of X are 1 and 2 . The spectral theorem for compact self-adjoint operators then says that $X=P_{1}+2 P_{2}$, where P_{i} is the orthogonal projection onto the i-eigenspace. This isn't exactly the right form yet, though, since $2 P_{2}$ is not a projection. However, we can rewrite $X=$ $\left(P_{1}+P_{2}\right)+P_{2}$. Then this works, since

$$
\left(P_{1}+P_{2}\right)^{2}=P_{1}^{2}+P_{1} P_{2}+P_{2} P_{1}+P_{2}^{2}=P_{1}+P_{2}
$$

using that eigenspaces have trivial intersection, so $P_{i} P_{j}=0$ and $P_{i}^{2}=P_{i}$. Therefore, $P_{1}+P_{2}$ is a projection. Also, $\left(\left(P_{1}+P_{2}\right) x, y\right)=\left(x,\left(P_{1}+P_{2}\right) y\right)$ since each of P_{1} and P_{2} is orthogonal, so $P_{1}+P_{2}$ is an orthogonal projection. Therefore, letting $P=P_{1}+P_{2}, Q=P_{2}$, we have $X=P+Q$.
(b) Since X only has a finite number of eigenvalues, and we know by the spectral theorem that they have finite multiplicities, and also that they form an orthonormal basis of \mathcal{H}, what we have is that \mathcal{H} is in fact finite-dimensional. So of course any operator on \mathcal{H} has finite rank.

