
Problem 1. A function f : Rn → Rn is said to be a C∞-function if f has
continuous partial derivatives of all orders.

(a) Consider the function f : R → R defined by f(x) = exp[1/(x2 − 1)] if
|x| < 1 and f(x) = 0 if |x| ≥ 1. Show that f is a C∞-function such that
supp(f) = [−1, 1]. (Induction and L’Hospital’s rule are needed here.)

(b) For ε > 0 and a ∈ R, show that the function g(x) = f [(x − a)/ε] is also a
C∞-function with supp(g) = [a− ε, a + ε].

Solution:

Problem 2. Let f : R → R be integrable with respect to the Lebesgue
measure. Show that the function g : [0,∞) → R defined by

g(t) = sup{
∫
|f(x + y)− f(x)|dx : |y| < t}

for t ≥ 0 is continuous at t = 0.

Solution: Let f : R → R be integrable with respect to Lebesgue measure,
and let g be given as above. Let ε > 0 be given. Then there exists a simple
function φ such that φ ≤ f and

∫
|f − φ| < ε

2 . Since φ is simple, φ = (kχ[0,r] +
other indicator functions), for some r ∈ R. Then

|f(x + y)− f(x)| ≤ |f(x + y)− φ(x + y)|+ |φ(x + y)− φ(x)|+ |φ(x)− f(x)|

Pick δ such that 0 < δ < r. Then for 0 ≤ t < δ, we have

|g(t)| = sup{
∫
|f(x + y)− f(x)|dx : |y| ≤ t}

≤ sup{
∫
|f(x + y)− φ(x + y)|+

∫
|φ(x + y)− φ(x)|+

∫
|φ(x)− f(x)| : |y| ≤ δ}∫

|φ(x+ y)−φ(x)| = 0 for all |y| ≤ δ since for y in the interval [0, r], φ(x+ y) =
φ(x). Also,

∫
|f(x+y)−φ(x+y)| =

∫
|f(x)−φ(x)| < ε

2 , independent of y. There-
fore, the entire right hand side above is < ε. Since g(0) = 0, g is continuous at 0.

Problem 3. Consider the following theorem:
Let 1 ≤ p < ∞ and f ∈ Lp, and let {fn} be a sequence in Lp such that
fn → f a.e. If limn→∞ ||fn||Lp = ||f ||Lp , then limn→∞ ||fn − f ||Lp = 0.

Show by an example that this theorem is false when p = ∞.

Solution: Let fn = χ[−2,−1] + χ[n,∞). Then fn → f = χ[−2,−1] a.e. ||fn||∞ = 1,
||f ||∞ = 1, but ||fn − f ||∞ = 1,∀n.

Problem 4. On C0([0, 1]) consider the two norms

||f ||∞ = sup
x∈[0,1]

|f(x)|, ||f ||1 =
∫ 1

0

|f(x)|dx.
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Solution:

Problem 5. Let H be a Hilbert space. for a subset A of H, let A⊥ denote
the orthogonal complement of A.

(a) Prove that for any subset A, (A⊥)⊥ is the closed linear span of A.

(b) Prove that if A is a closed convex subset of H, then A contains a unique
element of minimal norm.

Solution: (a): Let a lie in the linear span of A. By linearity of the inner prod-
uct, < a, x >= 0 ∀x ∈ A⊥. Therefore, by the definition of (A⊥)⊥, a ∈ (A⊥)⊥.
Now if a lies in the closed linear span of A, then by continuity of <,> we also
have < a, x >= 0 for all x ∈ A, so a ∈ (A⊥)⊥. So we have that the closed linear
span of A is contained in (A⊥)⊥. Next, since the closed linear span of A (denoted
< A > from now on) is in fact closed, we have H =< A > ⊕ < A >⊥. We have
< A >⊥= A⊥ since if < y, a >= 0 for all a ∈ A, then < y, a′ >= 0 for all a′ ∈ A
by linearity and continuity. So H =< A > ⊕A⊥. Now let a ∈ (A⊥)⊥. Then
a = a1 + a2, where a1 ∈< A >, and a2 ∈ A⊥. Since a ∈ (A⊥)⊥, < a, x >= 0
for all x ∈ A⊥. Therefore, < a1, x > + < a2, x >= 0 for all x ∈ A⊥. Let
x = a2 ∈ A⊥. Then < a1, a2 > + < a2, a2 >= 0. Since a1 ∈< A > and
a2 ∈ A⊥, < a1, a2 >= 0. Therefore, < a2, a2 >= ||a2||2 = 0 ⇒ a2 = 0. There-
fore, a ∈< A >. Therefore, (A⊥)⊥ =< A >.

(b) Let A be closed and convex. Let d = inf{||a|| : a ∈ A}. Then ∃an ∈ A such
that limn→∞ ||an|| = d, so for all ε > 0, there is an N such that ||an|| ≤ d + ε.
Claim: an is Cauchy. Proof:

||an − am||2 = 2||an||2 + 2||am||2 − ||an + am||2

by the parallelogram law. Since A is convex, an+am

2 ∈ A ⇒ ||an+am||
2 ≥ d. So

||an − am||2 ≤ 2(d + ε)2 + 2(d + ε)2 − 4d2

= 8dε + 4ε2

= ε(8d + 4ε)

So an is Cauchy.

Therefore, (an) converges, and since A is closed, an → a ∈ A. Sup-
pose now that ||a′|| = d. Then ||a − a′||2 = 2||a||2 + 2||a′||2 − ||a + a′||2.
a+a′

2 ∈ A ⇒ ||a + a′|| ≥ 2d. So then ||a− a′||2 ≤ 2d2 + 2d2 − 4d2 ≤ 0 ⇒ a = a′.

Problem 6. Let H be a Hilbert space and X = X∗ ∈ B(H) be compact and
such that

1
3
X3 −X2 +

2
3
X = 0

(B(H) is the bounded linear operators on H)
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(a) Prove that X can be written as the sum of two orthogonal projections, i.e.,
there exists orthogonal projections P and Q, such that X = P + Q.

(b) Explain why any two orthogonal projections P and Q such that X = P +Q,
are necessarily of finite rank?

Solution: (a)

1
3
X3 −X2 +

2
3
X = 0 ⇒ X(X − 1)(X − 2) = 0

Therefore, the only nonzero eigenvalues of X are 1 and 2. The spectral theorem
for compact self-adjoint operators then says that X = P1 + 2P2, where Pi is
the orthogonal projection onto the i-eigenspace. This isn’t exactly the right
form yet, though, since 2P2 is not a projection. However, we can rewrite X =
(P1 + P2) + P2. Then this works, since

(P1 + P2)2 = P 2
1 + P1P2 + P2P1 + P 2

2 = P1 + P2

using that eigenspaces have trivial intersection, so PiPj = 0 and P 2
i = Pi.

Therefore, P1 + P2 is a projection. Also, ((P1 + P2)x, y) = (x, (P1 + P2)y) since
each of P1 and P2 is orthogonal, so P1 + P2 is an orthogonal projection. There-
fore, letting P = P1 + P2, Q = P2, we have X = P + Q.

(b) Since X only has a finite number of eigenvalues, and we know by the spec-
tral theorem that they have finite multiplicities, and also that they form an
orthonormal basis of H, what we have is that H is in fact finite-dimensional. So
of course any operator on H has finite rank.
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