Problem 1. A function $f: \mathbf{R^n} \to \mathbf{R^n}$ is said to be a C^{∞} -function if f has continuous partial derivatives of all orders.

- (a) Consider the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \exp[1/(x^2 1)]$ if |x| < 1 and f(x) = 0 if $|x| \ge 1$. Show that f is a C^{∞} -function such that $\sup(f) = [-1, 1]$. (Induction and L'Hospital's rule are needed here.)
- (b) For $\epsilon > 0$ and $a \in \mathbf{R}$, show that the function $g(x) = f[(x-a)/\epsilon]$ is also a C^{∞} -function with supp $(g) = [a \epsilon, a + \epsilon]$.

Solution:

Problem 2. Let $f: \mathbf{R} \to \mathbf{R}$ be integrable with respect to the Lebesgue measure. Show that the function $g: [0, \infty) \to \mathbf{R}$ defined by

$$g(t) = \sup\{ \int |f(x+y) - f(x)| dx : |y| < t \}$$

for $t \geq 0$ is continuous at t = 0.

Solution: Let $f: \mathbf{R} \to \mathbf{R}$ be integrable with respect to Lebesgue measure, and let g be given as above. Let $\epsilon > 0$ be given. Then there exists a simple function ϕ such that $\phi \leq f$ and $\int |f - \phi| < \frac{\epsilon}{2}$. Since ϕ is simple, $\phi = (k\chi_{[0,r]} + \text{other indicator functions})$, for some $r \in \mathbf{R}$. Then

$$|f(x+y)-f(x)| \le |f(x+y)-\phi(x+y)| + |\phi(x+y)-\phi(x)| + |\phi(x)-f(x)|$$

Pick δ such that $0 < \delta < r$. Then for $0 \le t < \delta$, we have

$$|g(t)| = \sup \{ \int |f(x+y) - f(x)| dx : |y| \le t \}$$

$$\le \sup \{ \int |f(x+y) - \phi(x+y)| + \int |\phi(x+y) - \phi(x)| + \int |\phi(x) - f(x)| : |y| \le \delta \}$$

 $\int |\phi(x+y) - \phi(x)| = 0$ for all $|y| \le \delta$ since for y in the interval [0,r], $\phi(x+y) = \phi(x)$. Also, $\int |f(x+y) - \phi(x+y)| = \int |f(x) - \phi(x)| < \frac{\epsilon}{2}$, independent of y. Therefore, the entire right hand side above is $< \epsilon$. Since g(0) = 0, g is continuous at 0.

Problem 3. Consider the following theorem:

Let $1 \le p < \infty$ and $f \in L^p$, and let $\{f_n\}$ be a sequence in L^p such that $f_n \to f$ a.e. If $\lim_{n \to \infty} ||f_n||_{L^p} = ||f||_{L^p}$, then $\lim_{n \to \infty} ||f_n - f||_{L^p} = 0$. Show by an example that this theorem is false when $p = \infty$.

Solution: Let $f_n = \chi_{[-2,-1]} + \chi_{[n,\infty)}$. Then $f_n \to f = \chi_{[-2,-1]}$ a.e. $||f_n||_{\infty} = 1$, $||f||_{\infty} = 1$, but $||f_n - f||_{\infty} = 1$, $\forall n$.

Problem 4. On $C^0([0,1])$ consider the two norms

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|, \quad ||f||_{1} = \int_{0}^{1} |f(x)| dx.$$

Solution:

Problem 5. Let \mathcal{H} be a Hilbert space. for a subset A of \mathcal{H} , let A^{\perp} denote the orthogonal complement of A.

- (a) Prove that for any subset A, $(A^{\perp})^{\perp}$ is the closed linear span of A.
- (b) Prove that if A is a closed convex subset of \mathcal{H} , then A contains a unique element of minimal norm.

Solution: (a): Let a lie in the linear span of A. By linearity of the inner product, $\langle a,x \rangle = 0 \ \forall x \in A^{\perp}$. Therefore, by the definition of $(A^{\perp})^{\perp}$, $a \in (A^{\perp})^{\perp}$. Now if a lies in the closed linear span of A, then by continuity of <, > we also have < a, x >= 0 for all $x \in A$, so $a \in (A^{\perp})^{\perp}$. So we have that the closed linear span of A is contained in $(A^{\perp})^{\perp}$. Next, since the closed linear span of A (denoted < A > from now on) is in fact closed, we have $\mathcal{H} = < A > \oplus < A >^{\perp}$. We have $< A >^{\perp} = A^{\perp}$ since if < y, a >= 0 for all $a \in A$, then < y, a' >= 0 for all $a' \in A$ by linearity and continuity. So $\mathcal{H} = < A > \oplus A^{\perp}$. Now let $a \in (A^{\perp})^{\perp}$. Then $a = a_1 + a_2$, where $a_1 \in < A >$, and $a_2 \in A^{\perp}$. Since $a \in (A^{\perp})^{\perp}$, < a, x >= 0 for all $x \in A^{\perp}$. Therefore, $< a_1, x > + < a_2, x >= 0$ for all $x \in A^{\perp}$. Let $x = a_2 \in A^{\perp}$. Then $< a_1, a_2 > + < a_2, a_2 >= 0$. Since $a_1 \in < A >$ and $a_2 \in A^{\perp}$, $< a_1, a_2 >= 0$. Therefore, $< a_2, a_2 >= ||a_2||^2 = 0 \Rightarrow a_2 = 0$. Therefore, $< a \in < A >$. Therefore, $< a \in < A >$.

(b) Let A be closed and convex. Let $d = \inf\{||a|| : a \in A\}$. Then $\exists a_n \in A$ such that $\lim_{n \to \infty} ||a_n|| = d$, so for all $\epsilon > 0$, there is an N such that $||a_n|| \le d + \epsilon$. Claim: a_n is Cauchy. Proof:

$$||a_n - a_m||^2 = 2||a_n||^2 + 2||a_m||^2 - ||a_n + a_m||^2$$

by the parallelogram law. Since A is convex, $\frac{a_n+a_m}{2}\in A\Rightarrow \frac{||a_n+a_m||}{2}\geq d$. So

$$||a_n - a_m||^2 \le 2(d+\epsilon)^2 + 2(d+\epsilon)^2 - 4d^2$$

$$= 8d\epsilon + 4\epsilon^2$$

$$= \epsilon(8d+4\epsilon)$$

So a_n is Cauchy.

Therefore, (a_n) converges, and since A is closed, $a_n \to a \in A$. Suppose now that ||a'|| = d. Then $||a - a'||^2 = 2||a||^2 + 2||a'||^2 - ||a + a'||^2$. $\frac{a+a'}{2} \in A \Rightarrow ||a+a'|| \ge 2d$. So then $||a-a'||^2 \le 2d^2 + 2d^2 - 4d^2 \le 0 \Rightarrow a = a'$.

Problem 6. Let \mathcal{H} be a Hilbert space and $X=X^*\in\mathcal{B}(\mathcal{H})$ be compact and such that

$$\frac{1}{3}X^3 - X^2 + \frac{2}{3}X = 0$$

 $(\mathcal{B}(\mathcal{H}))$ is the bounded linear operators on \mathcal{H}

- (a) Prove that X can be written as the sum of two orthogonal projections, i.e., there exists orthogonal projections P and Q, such that X = P + Q.
- (b) Explain why any two orthogonal projections P and Q such that X = P + Q, are necessarily of finite rank?

Solution: (a)

$$\frac{1}{3}X^3 - X^2 + \frac{2}{3}X = 0 \Rightarrow X(X - 1)(X - 2) = 0$$

Therefore, the only nonzero eigenvalues of X are 1 and 2. The spectral theorem for compact self-adjoint operators then says that $X = P_1 + 2P_2$, where P_i is the orthogonal projection onto the *i*-eigenspace. This isn't exactly the right form yet, though, since $2P_2$ is not a projection. However, we can rewrite $X = (P_1 + P_2) + P_2$. Then this works, since

$$(P_1 + P_2)^2 = P_1^2 + P_1P_2 + P_2P_1 + P_2^2 = P_1 + P_2$$

using that eigenspaces have trivial intersection, so $P_iP_j=0$ and $P_i^2=P_i$. Therefore, P_1+P_2 is a projection. Also, $((P_1+P_2)x,y)=(x,(P_1+P_2)y)$ since each of P_1 and P_2 is orthogonal, so P_1+P_2 is an orthogonal projection. Therefore, letting $P=P_1+P_2$, $Q=P_2$, we have X=P+Q.

(b) Since X only has a finite number of eigenvalues, and we know by the spectral theorem that they have finite multiplicities, and also that they form an orthonormal basis of \mathcal{H} , what we have is that \mathcal{H} is in fact finite-dimensional. So of course any operator on \mathcal{H} has finite rank.