Problem 1. A function f : R® — R" is said to be a C*°-function if f has
continuous partial derivatives of all orders.

(a) Consider the function f : R — R defined by f(z) = exp[l/(z? — 1)] if
|z| <1 and f(x) = 0if || > 1. Show that f is a C*°-function such that
supp(f) = [-1,1]. (Induction and L’Hospital’s rule are needed here.)

(b) For e > 0 and a € R, show that the function g(z) = f[(x — a)/¢] is also a
C*°-function with supp(g) = [a — €, a + €.

Solution:

Problem 2. Let f : R — R be integrable with respect to the Lebesgue
measure. Show that the function g : [0,00) — R defined by

o) =sup{ [ |fa+9) = fa)ldo s o] < )
for t > 0 is continuous at t = 0.

Solution: Let f : R — R be integrable with respect to Lebesgue measure,
and let g be given as above. Let € > 0 be given. Then there exists a simple
function ¢ such that ¢ < f and [|f —¢| < §. Since ¢ is simple, ¢ = (kx[o,) +
other indicator functions), for some r € R. Then

[f(z+y) = f@)| < |f(x+y) —o@+y)|+ oz +y) — o) +[¢(z) — f(=)|
Pick § such that 0 < § < 7. Then for 0 <t < J, we have

9] = sup{ [ 17+ )~ Flalde o] < )
sup( [ 1o +) = o+ )|+ [ oo +) = o) + [ 166) — F(@)]:1o] <3}

[ |¢(xz+y) — ¢(x)| = 0 for all |y| < & since for y in the interval [0,7], p(z +y) =
d(x). Also, [ |f(z+y)—o(z+y)| = [ |f(x)—¢(x)| < §, independent of y. There-
fore, the entire right hand side above is < €. Since g(0) = 0, g is continuous at 0.

IN

Problem 3. Consider the following theorem:
Let 1 <p<ooand f € L?, and let {f,} be a sequence in L? such that

fo — fae Iflim, oo || frllze = || f]|Le, then limy, oo || fr — fllz» = 0.
Show by an example that this theorem is false when p = co.

Solution: Let f, = X[—2,-1] + X[n,00)- Then fn — f = Xx[_2,1] a.e. || frlloo = 1,
[fllec =1, but || fr — flloc = 1,Vn.

Problem 4. On C°([0,1]) consider the two norms

1
flle = sup [f@)] [Iflh = / £ (2)dz.

z€(0,1]



Solution:

Problem 5. Let H be a Hilbert space. for a subset A of H, let A+ denote
the orthogonal complement of A.

(a) Prove that for any subset A, (A1), is the closed linear span of A.

(b) Prove that if A is a closed convex subset of H, then A contains a unique
element of minimal norm.

Solution: (a): Let a lie in the linear span of A. By linearity of the inner prod-
uct, < a,r >= 0 Vo € AL. Therefore, by the definition of (A1)*, a € (A+)+.
Now if @ lies in the closed linear span of A, then by continuity of <, > we also
have < a,z >= 0 forall z € A, so a € (A1)1. So we have that the closed linear
span of A is contained in (A+)+. Next, since the closed linear span of A (denoted
< A > from now on) is in fact closed, we have H =< A > @ < A >*. We have
< A>t= At sinceif < y,a >=0foralla € A, then < y,a’ >=0foralla’ € A
by linearity and continuity. So H =< A > ®AL. Now let a € (A+)%. Then
a = ay + az, where a; €< A >, and ay € A+, Since a € (A4)*, < a,z >=0
for all z € AL, Therefore, < aj,z > + < az,x >= 0 for all z € AL, Let
z = as € A+. Then < aj,as > + < as,as >= 0. Since a; €< A > and
az € At, < aj,ay >= 0. Therefore, < ag,as >= ||az||?> = 0 = az = 0. There-
fore, a €< A >. Therefore, (A1)t =< A >.

(b) Let A be closed and convex. Let d = inf{||a|| : @ € A}. Then Ja,, € A such
that lim,, . ||an|| = d, so for all € > 0, there is an N such that ||a,|| < d +e.
Claim: a,, is Cauchy. Proof:

llan — am”2 = 2||an”2 + 2||am||2 —lan + amH2
by the parallelogram law. Since A is convex, %2t%m € A = HGLQGT“” >d. So

l|an —am||> < 2(d+€)* +2(d + €)* — 4d?
= 8de+4¢?
= €(8d+ 4e)

So a,, is Cauchy.

Therefore, (a,) converges, and since A is closed, a, — a € A. Sup-
pose now that ||a/|| = d. Then |la — d'||> = 2||a||* + 2||d||* — ||a + ||?.
%‘l/ € A= |la+d'|| >2d. So then ||la—d'||? <2d*+2d? —4d*> <0=a=ad.

Problem 6. Let H be a Hilbert space and X = X* € B(H) be compact and
such that

1 2
X3 X2+ 2X =0
3 *3

(B(H) is the bounded linear operators on H)



(a) Prove that X can be written as the sum of two orthogonal projections, i.e.,
there exists orthogonal projections P and @, such that X = P + Q.

(b) Explain why any two orthogonal projections P and @ such that X = P+@Q,
are necessarily of finite rank?

Solution: (a)
1oy oy 2
X XP 4 DX =05 X(X - 1)(X -2) =0

Therefore, the only nonzero eigenvalues of X are 1 and 2. The spectral theorem
for compact self-adjoint operators then says that X = P, + 2P, where P; is
the orthogonal projection onto the i-eigenspace. This isn’t exactly the right
form yet, though, since 2P, is not a projection. However, we can rewrite X =
(Py + P2) 4+ P>. Then this works, since

(PL+P)> =P+ PP+ PP+ Py =P+ Py

using that eigenspaces have trivial intersection, so P,P; = 0 and P? = P,.
Therefore, Py + P is a projection. Also, ((P1 + P2)z,y) = (z, (P + P»)y) since
each of P; and P, is orthogonal, so P; + P» is an orthogonal projection. There-
fore, letting P = P; + P>, Q@ = P,, we have X = P + Q.

(b) Since X only has a finite number of eigenvalues, and we know by the spec-
tral theorem that they have finite multiplicities, and also that they form an
orthonormal basis of H, what we have is that H is in fact finite-dimensional. So
of course any operator on H has finite rank.



