
Problem 1. Prove or disprove: Any linear bounded operator in a complex
Hilbert space can be written as a linear combination of two self-adjoint opera-
tors. (Hint: Consider first the finite-dimensional case.)

Solution: Let X be a bounded operator in a complex Hilbert space. Write:
X = 1

2 (X + X∗)− i
2 (iX − iX∗). Then one can check that each of the operators

(X + X∗) and (iX − iX∗) is self-adjoint.

Problem 2. Consider the Hilbert space L2[−1, 1].
(i) Find the orthogonal complement of the space of all polynomials. (Hint: Use
the Stone-Weierstrass theorem.)
(ii) Find the orthogonal complement of the space of polynomials in x2.

Solution: i) By Stone-Weierstrass, the polynomials are dense in C([−1, 1]), so
the orthogonal complement of the space of polynomials is the same as the or-
thogonal complement of the space of continuous functions. Continuous functions
are dense in L2 with respect to the L2 norm, so the orthogonal complement is
empty.
ii) (unfinished) The orthogonal complement in L2([−1, 1]) of the space of polyno-
mials in x2 is the same as the orthogonal complement in the space of polynomials
of the space of polynomials in x2, since polynomials are dense in L2 by part (i).
Let P (x2) = space of polynomials in x2. Then P (x2)⊥ ⊂ {x2}⊥. So let’s find
{x2}⊥ first. Suppose < x2,

∑n
i=0 aix

i >= 0. This is the same as:

n∑
i=0

ai < x2, xi >=
n∑

i=0

ai

∫ 1

−1

x2+idx = a′0 + a′2 + · · ·+ a′n = 0

where a′i = 2ai

2+i+1 and n is even, if n is odd then the sum at the end above
should run from a′0 to a′n−1. The above holds because terms with i = odd are
killed. So we have that {x2}⊥ = {

∑n
i=0 aix

i :
∑

i even
2ai

3+i = 0}. Actually, it
should be the L2 closure of this set?
But there are things in here that are not in P (x2)⊥. For instance, 3x6 − 2

3 ∈
{x2}⊥, but < 3x6 − 2

3 , x2 + 1 >6= 0, so 3x6 − 2
3 /∈ P (x2)⊥.

· · ·

Problem 3. Consider the space of all polynomials on [0, 1] vanishing at the
origin, with the sup norm. Prove that the space is not complete and find its
completion.

Solution: We can approximate sin(x) by Taylor series. Every Taylor series
approximation is a polynomial that is 0 at the origin. The Taylor series ap-
proximations are Cauchy, since the tails go to zero, and converge to sin(x), but
sin(x) is not in the space, so the space is not complete.
Conjecture: The completion is the space of all continuous functions on [0, 1]
that vanish at the origin.
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Problem 4. Prove that R1 with the metrics
(i) ρ(x, y) = |arctan(x)− arctan(y)|
or
(ii) ρ(x, y) = |exp(x)− exp(y)|
is incomplete, and find the completion in each case.

Solution: (i) Define a sequence (xn) by xn = n. Then (xn) is Cauchy with re-
spect to the given metric since arctan(n) gets arbitrarily close to π

2 as n →∞.
However, (xn) does not have a limit in R. For, if it did and xn → x ∈ R,
we would have | arctan(x) − π

2 | = c > 0, and could then find N such that
n ≥ N ⇒ | arctan(xn) − π

2 | < c
2 , so that ρ(xn, x) > c

2 ∀n ≥ N , which is a
contradiction. The completion of R with respect to ρ is R ∪ {±∞}. Proof?
(ii) We can do the same trick as above by setting xn = −n. Then exp(xn) → 0
as n →∞, so (xn is Cauchy. But it does not converge to anything in R by the
same reasoning as above. In this case, however, it only goes in one direction, so
the completion of R with respect to ρ is R ∪ {−∞}.

Problem 5. Consider a continuous mapping of the closed unit square [0, 1]×[0, 1]
into some metric space X. Prove that the image of the square under such a map-
ping is compact.

Solution: In general, if Y is compact, and f : Y → X is continuous, then f(Y )
is compact. Proof sketch: Let {Xα} be a covering of f(Y ). Then {f−1(Xα)}
covers Y , so there is a finite subcover, {f−1(Xi)}n

i=1. Then X1, . . . , Xn cover
f(Y ).

Problem 6. Prove or disprove:
C[0, 1] with the usual sup norm is a Hilbert space. (Hint: Consider two contin-
uous functions with disjoint supports and calculate the norm of their sum.)

Solution: If we take two continuous functions f and g with disjoint supports,
then the norm of their sum is the max of their norms (we’re talking sup-norm
throughout). A norm is derived from an inner product if and only if it obeys
the parallelogram law: ||f + g||2 + ||f − g||2 = 2||f ||2 + 2||g||2. If we take

f(x) =
{

1− 2x, x ≤ 1
2

0 x > 1
2

and

g(x) =
{

0 x ≤ 1
2

1
2 + x

2 x > 1
2

then ||f + g||∞ = 1, ||f − g||∞ = 1, ||f ||∞ = 1, ||g||∞ = 1
2 , so the parallelogram

identity would say: 12+12 = 2(12)+2(1
2 )2 ⇒ 2 = 2+ 1

2 , which is a contradiction.
So it cannot be a Hilbert space.
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