Problem 1. Prove or disprove: Any linear bounded operator in a complex Hilbert space can be written as a linear combination of two self-adjoint operators. (Hint: Consider first the finite-dimensional case.)

Solution: Let X be a bounded operator in a complex Hilbert space. Write: $X=\frac{1}{2}\left(X+X^{*}\right)-\frac{i}{2}\left(i X-i X^{*}\right)$. Then one can check that each of the operators $\left(X+X^{*}\right)$ and $\left(i X-i X^{*}\right)$ is self-adjoint.

Problem 2. Consider the Hilbert space $L^{2}[-1,1]$.
(i) Find the orthogonal complement of the space of all polynomials. (Hint: Use the Stone-Weierstrass theorem.)
(ii) Find the orthogonal complement of the space of polynomials in x^{2}.

Solution: i) By Stone-Weierstrass, the polynomials are dense in $C([-1,1])$, so the orthogonal complement of the space of polynomials is the same as the orthogonal complement of the space of continuous functions. Continuous functions are dense in L^{2} with respect to the L^{2} norm, so the orthogonal complement is empty.
ii) (unfinished) The orthogonal complement in $L^{2}([-1,1])$ of the space of polynomials in x^{2} is the same as the orthogonal complement in the space of polynomials of the space of polynomials in x^{2}, since polynomials are dense in L^{2} by part (i). Let $P\left(x^{2}\right)=$ space of polynomials in x^{2}. Then $P\left(x^{2}\right)^{\perp} \subset\left\{x^{2}\right\}^{\perp}$. So let's find $\left\{x^{2}\right\}^{\perp}$ first. Suppose $<x^{2}, \sum_{i=0}^{n} a_{i} x^{i}>=0$. This is the same as:

$$
\sum_{i=0}^{n} a_{i}<x^{2}, x^{i}>=\sum_{i=0}^{n} a_{i} \int_{-1}^{1} x^{2+i} d x=a_{0}^{\prime}+a_{2}^{\prime}+\cdots+a_{n}^{\prime}=0
$$

where $a_{i}^{\prime}=\frac{2 a_{i}}{2+i+1}$ and n is even, if n is odd then the sum at the end above should run from a_{0}^{\prime} to a_{n-1}^{\prime}. The above holds because terms with $i=o d d$ are killed. So we have that $\left\{x^{2}\right\}^{\perp}=\left\{\sum_{i=0}^{n} a_{i} x^{i}: \sum_{i \text { even }} \frac{2 a_{i}}{3+i}=0\right\}$. Actually, it should be the L^{2} closure of this set?
But there are things in here that are not in $P\left(x^{2}\right)^{\perp}$. For instance, $3 x^{6}-\frac{2}{3} \in$ $\left\{x^{2}\right\}^{\perp}$, but $<3 x^{6}-\frac{2}{3}, x^{2}+1>\neq 0$, so $3 x^{6}-\frac{2}{3} \notin P\left(x^{2}\right)^{\perp}$.
...

Problem 3. Consider the space of all polynomials on $[0,1]$ vanishing at the origin, with the sup norm. Prove that the space is not complete and find its completion.

Solution: We can approximate $\sin (x)$ by Taylor series. Every Taylor series approximation is a polynomial that is 0 at the origin. The Taylor series approximations are Cauchy, since the tails go to zero, and converge to $\sin (x)$, but $\sin (x)$ is not in the space, so the space is not complete.
Conjecture: The completion is the space of all continuous functions on $[0,1]$ that vanish at the origin.

Problem 4. Prove that $\mathbf{R}^{\mathbf{1}}$ with the metrics
(i) $\rho(x, y)=|\arctan (x)-\arctan (y)|$
or
(ii) $\rho(x, y)=|\exp (x)-\exp (y)|$
is incomplete, and find the completion in each case.
Solution: (i) Define a sequence $\left(x_{n}\right)$ by $x_{n}=n$. Then $\left(x_{n}\right)$ is Cauchy with respect to the given metric since $\arctan (n)$ gets arbitrarily close to $\frac{\pi}{2}$ as $n \rightarrow \infty$. However, $\left(x_{n}\right)$ does not have a limit in \mathbf{R}. For, if it did and $x_{n} \rightarrow x \in \mathbf{R}$, we would have $\left|\arctan (x)-\frac{\pi}{2}\right|=c>0$, and could then find N such that $n \geq N \Rightarrow\left|\arctan \left(x_{n}\right)-\frac{\pi}{2}\right|<\frac{c}{2}$, so that $\rho\left(x_{n}, x\right)>\frac{c}{2} \forall n \geq N$, which is a contradiction. The completion of \mathbf{R} with respect to ρ is $\mathbf{R} \cup\{ \pm \infty\}$. Proof?
(ii) We can do the same trick as above by setting $x_{n}=-n$. Then $\exp \left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, so (x_{n} is Cauchy. But it does not converge to anything in \mathbf{R} by the same reasoning as above. In this case, however, it only goes in one direction, so the completion of \mathbf{R} with respect to ρ is $\mathbf{R} \cup\{-\infty\}$.

Problem 5. Consider a continuous mapping of the closed unit square $[0,1] \times[0,1]$ into some metric space X. Prove that the image of the square under such a mapping is compact.

Solution: In general, if Y is compact, and $f: Y \rightarrow X$ is continuous, then $f(Y)$ is compact. Proof sketch: Let $\left\{X_{\alpha}\right\}$ be a covering of $f(Y)$. Then $\left\{f^{-1}\left(X_{\alpha}\right)\right\}$ covers Y, so there is a finite subcover, $\left\{f^{-1}\left(X_{i}\right)\right\}_{i=1}^{n}$. Then X_{1}, \ldots, X_{n} cover $f(Y)$.

Problem 6. Prove or disprove:
$C[0,1]$ with the usual sup norm is a Hilbert space. (Hint: Consider two continuous functions with disjoint supports and calculate the norm of their sum.)

Solution: If we take two continuous functions f and g with disjoint supports, then the norm of their sum is the max of their norms (we're talking sup-norm throughout). A norm is derived from an inner product if and only if it obeys the parallelogram law: $\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2}$. If we take

$$
f(x)=\left\{\begin{array}{cl}
1-2 x, & x \leq \frac{1}{2} \\
0 & x>\frac{1}{2}
\end{array}\right.
$$

and

$$
g(x)=\left\{\begin{array}{cl}
0 & x \leq \frac{1}{2} \\
\frac{1}{2}+\frac{x}{2} & x>\frac{1}{2}
\end{array}\right.
$$

then $\|f+g\|_{\infty}=1,\|f-g\|_{\infty}=1,\|f\|_{\infty}=1,\|g\|_{\infty}=\frac{1}{2}$, so the parallelogram identity would say: $1^{2}+1^{2}=2\left(1^{2}\right)+2\left(\frac{1}{2}\right)^{2} \Rightarrow 2=2+\frac{1}{2}$, which is a contradiction. So it cannot be a Hilbert space.

