Problem 1. Let f: (—1,1) — R be a differentiable function such that there
exists a limit
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Does it follow that the second derivative f”(0) exists and equals L? Give a
proof or a counter-example.

Solution: Let f be as above. Then we must have lim,_o f(z) = 0. There-
fore, by L’Hopital, lim,_.q # = L. We have then that f'(z) — 0 as z — 0.
But what is f/(0)?

f'(0) = lim M — lim M
z—0 €T z—0 T
because lim,_,o f(z) = 0 and f is continuous. This limit exists since f is
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differentiable. We can again use L’Hopital to get that f'(0) = lim,_¢
lim, o £ = 0. So 1/(0) = 0. Therefore,
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Problem 2. For functions from [0,1] — R do the following: a) Define what
it means for a sequence of functions to converge uniformly. b) Explain what it
means for a sequence of functions to be equicontinuous. ¢) Does every equicon-
tinuous sequence of functions (that converges pointwise) converge uniformly to
a continuous function? Is the converse true? Give examples or prove.

Solution: Parts (a) and (b) are just definitions. Part (c) solution: Every equicon-
tinuous sequence of functions that converges pointwise must converge uniformly
to a continuous function. Proof: First, if {f,} is equicontinuous on a compact
set, then it must be uniformly equicontinuous. Let € > 0 be given. Proof of this
fact: For all z € [0,1],36, such that |z — y| < J, implies |f,(z) — fu(y)| < §
for all n. Cover the interval [0, 1] by Uycjo,1)(z — %, @+ % ). Since [0, 1] is com-

pact, there is a finite subcover, say (x; — 6”717:51 + 5”71)7 oy (T — 512""73% + 517’”)
that covers [0,1]. Let § = § min{d,,..., 0z}, then let z,y € [0,1] such that

|z —y| < 0. Then z,y € (x; — 5;",xi + 5;,;) for some ¢. So then:

[Fal@) = Fa@)] < |fu@) = Jal@o)| + |fula) = July)] < 5+ 5 =
for all n. Therefore, {f,} is uniformly equicontinuous.
Continuing the proof, suppose f,, — f pointwise and { f,} is uniformly equicon-
tinuous. Given € > 0, we can pick § > 0 such that |[zr—y| < d = |fn(2x)—fn(y)] <
§ for all n. Cover [0, 1] by sets of the form (z — 0,z +9), for all = € [0,1]. Then
there exists a finite number of points z; such that U(x; — §,2; + d) covers [0, 1].
Since f,, — f pointwise, for each i there exists an N; such that m,n > N;



implies |f,(2;) — fm(2i)| < §. Let N = max;{N;}. Let n,m > N, z € [0,1].
Then x € (z; — d,z; + §) for some i. Then:

[fu(@) = ()] < | fu(@) = ful@a) | + [ fo(@i) = fon ()| + [fn(20) = frn ()]
< 3t5+s

== €

Since C([0, 1]) is complete with respect to the co-norm, f,, converges uniformly,
and therefore its limit must be continuous.

Note: As printed originally, ”Does every equicontinuous sequence of functions
converge uniformly to a continuous function?” the answer is clearly no — just
take f,, = n.

The converse of the modified statement is also true: If a sequence of continuous
functions converges uniformly to a continuous function, then that sequence is
equicontinuous. Proof:

Let = be given. For € > 0, pick N such that n > N = |f,(z) — f(z)| < §,Vz.
Next, let 6 > 0 be such that [z —y| <0 = |f(x) — f(y)| < §. Then for n > N,
we have:

[fo(@) = fu)] < |fal@) = F@)] + 1 (@) = fFW)]+ [f () — fn(y)]
€ € €
< g + g + g =€
So for n > N, {f,} is equicontinuous. For n < N, there’s only a finite number

so just take the minimum ¢§ that will work and that’s it.

Problem 3. Define two sequences of functions, (f,) and (g,), on the interval
[0,1] as follows:
falx) =01+ cos2rz)™,m > 1
1 1
gn(x) = (14 5008271’%)77,71 >1
a) What are the pointwise limits, f and g, of the sequences (f,) and (g,) re-
spectively?

b) For each sequence, determine whether the convergence is uniform. Explain
your answer.

Solution: a)
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where y € (0,2). Hence it’s clear that
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0 z=
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Similarly, g, (z) = y= where y € (1,2), so we have that g, — g = 1.



b) The convergence of the f,, is not uniform. If it were, since each f,, is con-
tinuous, their limit would have to be continuous, but it is not. The convergence

1%

of the g, is uniform. Given any € > 0, pick N s.t. 1 — 5% < e. Then for all
1
z €[0,1] and all n > N, g, (z) is closer to 1 than 1 — 7.

Problem 4. Let X and Y be topological spaces. Prove that if f : X — Y
is continuous and X is compact, then f(X) is also compact.

Solution: Let X, Y, f be as above. Let {Y,} be an open cover of f(X). Since f
is continuous, f~1(Y,) is open for each . The sets f~1(Y,,) cover X, so there
exists a finite subcover, say f~1(Y1),..., f~1(Y,). Then since f(f~*(v;)) C Vi,
and f(U;f~1(Y;)) = f(X), we must have that Y7,Ys, ..., Y, form a finite sub-
cover of f(X).

Problem 5. Let X be a normed linear space and let X* be its topological
dual. Suppose that z,y € X are such that for all ¢ € Xx*, ¢(z) = ¢(y). Prove
that x = y.

Solution: Suppose x,y € X are as above, so ¢(x) = ¢(y) = ¢(x —y) = 0,Ve €
X*. The points {t(z —y)} form a linear subspace of X. On this linear subspace
we can define a functional A(t(x—y)) = t||z —yl||. By Hahn-Banach, A can be ex-
tended to allof X. Then A € X*,s0 A(z—y) =0=|jz—y||=2—y=0=>2=1y.

Problem 6. Consider the following equation for an unknown function f : [0,1] —
R:

f(x) —|-/\/ T —y dy—&-%bln(f(x)) (1)

Prove that there exists a number A\ > 0 such that for all A € [0, o), and all
continuous functions g on [0, 1], the equation (1) has a unique continuous solu-
tion.

Solution: We will show the mapping T" given by

Tf—g+)\/ T—y ()dy—l—ism(f)

is a contraction, and use the Contraction Mapping Theorem. So in other words,
we need to show ||T'f — Thl|e < ¢||f — hl|so, for some ¢ < 1.

1
ITf—Thll = H/\/O (x = y)*(fy) = h(y))dy + %(Sin(f(fﬂ) = h(z))lleo

The first part can be recognized as a Fredholm operator. This is easily bounded:

1

w | [ @20 - hal < s [ - 0?0 -

0<z<1 Jo
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For the other part, we have

sin(f(z)) — sin(h(z))
f(x) = h(x)

for some ¢ € (0,1) by the Mean Value Theorem, so

= cos(c) <1

sin(f(z)) —sin(h(z)) < f(z) — h(z) vV € [0,1]

Therefore, 1 (sin(f(z)) — sin(h(z)) < ||f — A/ So

’ 2

A 1
ITf = Thlleo < FlIf = hlleo + SI1f = Pllo

To have % + % < 1, we need A < %, so let \g = % This makes T : C[0,1] —
C[0,1] a contraction, so it has a unique fixed point, i.e., so there is a unique

continuous solution to (1).



