
Problem 1. Let f : (−1, 1) → R be a differentiable function such that there
exists a limit

lim
x→0

f(x)
x2

= L ∈ R

Does it follow that the second derivative f ′′(0) exists and equals L? Give a
proof or a counter-example.

Solution: Let f be as above. Then we must have limx→0 f(x) = 0. There-
fore, by L’Hopital, limx→0

f ′(x)
x = L. We have then that f ′(x) → 0 as x → 0.

But what is f ′(0)?

f ′(0) = lim
x→0

f(x)− f(0)
x

= lim
x→0

f(x)
x

because limx→0 f(x) = 0 and f is continuous. This limit exists since f is
differentiable. We can again use L’Hopital to get that f ′(0) = limx→0

f(x)
x =

limx→0
f ′(x)

1 = 0. So f ′(0) = 0. Therefore,

f ′′(0) = lim
x→0

f ′(x)− f ′(0)
x

= lim
x→0

f ′(x)
x

= 2L.

Problem 2. For functions from [0, 1] → R do the following: a) Define what
it means for a sequence of functions to converge uniformly. b) Explain what it
means for a sequence of functions to be equicontinuous. c) Does every equicon-
tinuous sequence of functions (that converges pointwise) converge uniformly to
a continuous function? Is the converse true? Give examples or prove.

Solution: Parts (a) and (b) are just definitions. Part (c) solution: Every equicon-
tinuous sequence of functions that converges pointwise must converge uniformly
to a continuous function. Proof: First, if {fn} is equicontinuous on a compact
set, then it must be uniformly equicontinuous. Let ε > 0 be given. Proof of this
fact: For all x ∈ [0, 1],∃δx such that |x − y| < δx implies |fn(x) − fn(y)| < ε

2

for all n. Cover the interval [0, 1] by ∪x∈[0,1](x− δx

2 , x+ δx

2 ). Since [0, 1] is com-
pact, there is a finite subcover, say (x1 − δx1

2 , x1 + δx1
2 ), ..., (xk − δxk

2 , xk + δxk

2 )
that covers [0, 1]. Let δ = 1

2 min{δx1, ..., δxk}, then let x, y ∈ [0, 1] such that
|x− y| < δ. Then x, y ∈ (xi − δxi

2 , xi + δxi

2 ) for some i. So then:

|fn(x)− fn(y)| ≤ |fn(x)− fn(xi)|+ |fn(xi)− fn(y)| < ε

2
+

ε

2
= ε

for all n. Therefore, {fn} is uniformly equicontinuous.
Continuing the proof, suppose fn → f pointwise and {fn} is uniformly equicon-
tinuous. Given ε > 0, we can pick δ > 0 such that |x−y| < δ ⇒ |fn(x)−fn(y)| <
ε
3 for all n. Cover [0, 1] by sets of the form (x− δ, x + δ), for all x ∈ [0, 1]. Then
there exists a finite number of points xi such that ∪(xi − δ, xi + δ) covers [0, 1].
Since fn → f pointwise, for each i there exists an Ni such that m,n ≥ Ni
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implies |fn(xi) − fm(xi)| < ε
3 . Let N = maxi{Ni}. Let n, m > N , x ∈ [0, 1].

Then x ∈ (xi − δ, xi + δ) for some i. Then:

|fn(x)− fm(x)| ≤ |fn(x)− fn(xi)|+ |fn(xi)− fm(xi)|+ |fm(xi)− fm(x)|

<
ε

3
+

ε

3
+

ε

3
= ε

Since C([0, 1]) is complete with respect to the ∞-norm, fn converges uniformly,
and therefore its limit must be continuous.
Note: As printed originally, ”Does every equicontinuous sequence of functions
converge uniformly to a continuous function?” the answer is clearly no – just
take fn = n.
The converse of the modified statement is also true: If a sequence of continuous
functions converges uniformly to a continuous function, then that sequence is
equicontinuous. Proof:
Let x be given. For ε > 0, pick N such that n ≥ N ⇒ |fn(x) − f(x)| < ε

3 ,∀x.
Next, let δ > 0 be such that |x− y| < δ ⇒ |f(x)− f(y)| < ε

3 . Then for n ≥ N ,
we have:

|fn(x)− fn(y)| ≤ |fn(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− fn(y)|

<
ε

3
+

ε

3
+

ε

3
= ε

So for n ≥ N , {fn} is equicontinuous. For n < N , there’s only a finite number
so just take the minimum δ that will work and that’s it.

Problem 3. Define two sequences of functions, (fn) and (gn), on the interval
[0, 1] as follows:

fn(x) = (1 + cos2πx)
1
n , n ≥ 1

gn(x) = (1 +
1
2
cos2πx)

1
n , n ≥ 1

a) What are the pointwise limits, f and g, of the sequences (fn) and (gn) re-
spectively?
b) For each sequence, determine whether the convergence is uniform. Explain
your answer.

Solution: a)

fn(x) =
{

y
1
n , x 6= 1

2
0, x = 1

2

where y ∈ (0, 2). Hence it’s clear that

fn →
{

1 x 6= 1
2

0 x = 1
2

Similarly, gn(x) = y
1
n where y ∈ ( 1

2 , 3
2 ), so we have that gn → g ≡ 1.
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b) The convergence of the fn is not uniform. If it were, since each fn is con-
tinuous, their limit would have to be continuous, but it is not. The convergence
of the gn is uniform. Given any ε > 0, pick N s.t. 1 − 1

2

1
N < ε. Then for all

x ∈ [0, 1] and all n ≥ N , gn(x) is closer to 1 than 1− 1
2

1
N .

Problem 4. Let X and Y be topological spaces. Prove that if f : X → Y
is continuous and X is compact, then f(X) is also compact.

Solution: Let X, Y, f be as above. Let {Yα} be an open cover of f(X). Since f
is continuous, f−1(Yα) is open for each α. The sets f−1(Yα) cover X, so there
exists a finite subcover, say f−1(Y1), ..., f−1(Yn). Then since f(f−1(Yi)) ⊂ Yi,
and f(∪if

−1(Yi)) = f(X), we must have that Y1, Y2, ..., Yn form a finite sub-
cover of f(X).

Problem 5. Let X be a normed linear space and let X∗ be its topological
dual. Suppose that x, y ∈ X are such that for all φ ∈ X∗, φ(x) = φ(y). Prove
that x = y.

Solution: Suppose x, y ∈ X are as above, so φ(x) = φ(y) ⇒ φ(x− y) = 0,∀φ ∈
X∗. The points {t(x−y)} form a linear subspace of X. On this linear subspace
we can define a functional λ(t(x−y)) = t||x−y||. By Hahn-Banach, λ can be ex-
tended to all of X. Then λ ∈ X∗, so λ(x−y) = 0 = ||x−y|| ⇒ x−y = 0 ⇒ x = y.

Problem 6. Consider the following equation for an unknown function f : [0, 1] →
R:

f(x) = g(x) + λ

∫ 1

0

(x− y)2f(y)dy +
1
2

sin(f(x)) (1)

Prove that there exists a number λ0 > 0 such that for all λ ∈ [0, λ0), and all
continuous functions g on [0, 1], the equation (1) has a unique continuous solu-
tion.

Solution: We will show the mapping T given by

Tf = g + λ

∫ 1

0

(x− y)2f(y)dy +
1
2

sin(f)

is a contraction, and use the Contraction Mapping Theorem. So in other words,
we need to show ||Tf − Th||∞ ≤ c||f − h||∞, for some c < 1.

||Tf − Th||∞ = ||λ
∫ 1

0

(x− y)2(f(y)− h(y))dy +
1
2
(sin(f(x)− h(x))||∞

The first part can be recognized as a Fredholm operator. This is easily bounded:

sup
0≤x≤1

|
∫ 1

0

(x− y)2(f(y)− h(y))dy| ≤ sup
x

∫ 1

0

|(x− y)2||f(y)− h(y)|dy
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≤ ||f − h||∞ sup
x∈[0,1]

∫ 1

0

|(x− y)2|dy

≤ 1
3
||f − h||∞

For the other part, we have

sin(f(x))− sin(h(x))
f(x)− h(x)

= cos(c) ≤ 1

for some c ∈ (0, 1) by the Mean Value Theorem, so

sin(f(x))− sin(h(x)) ≤ f(x)− h(x) ∀x ∈ [0, 1]

Therefore, 1
2 (sin(f(x))− sin(h(x)) ≤ 1

2 ||f − h||∞. So

||Tf − Th||∞ ≤ λ

3
||f − h||∞ +

1
2
||f − h||∞

To have λ
3 + 1

2 < 1, we need λ < 3
2 , so let λ0 = 3

2 . This makes T : C[0, 1] →
C[0, 1] a contraction, so it has a unique fixed point, i.e., so there is a unique
continuous solution to (1).
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