Math 21D, Spring 2022 - Midterm 1 Review

Wednesday, April 13

1. Evaluate the integral:
(a) $\int_{0}^{1} \int_{0}^{x^{3}} e^{y / x} d y d x$
(d) $\int_{0}^{1} \int_{\sqrt[3]{y}}^{1} \frac{2 \pi \sin \pi x^{2}}{x^{2}} d x d y$
(b) $\int_{0}^{1} \int_{\sqrt{y}}^{2-\sqrt{y}} x y d x d y$
(e) $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \ln \left(x^{2}+y^{2}+1\right) d x d y$
(c) $\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y$
(f) $\int_{1}^{e} \int_{1}^{x} \int_{0}^{z} \frac{2 y}{z^{3}} d y d z d x$
2. Find the volume under the paraboloid $z=x^{2}+y^{2}$ above the triangle enclosed by $y=x$, $x=0$, and $x+y=2$ in the $x y$-plane.
3. Find the average value of the function $f(x, y)=x y$ over the quarter circle $x^{2}+y^{2}=1$ in the first quadrant.
4. Find the volume of the region enclosed on the top by the plane $z=-2 x$, on the side by the cylinder $x=-\cos y,-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$, and below by the $x y$-plane.
5. Find the average value of $f(x, y, z)=30 x z \sqrt{x^{2}+y}$ over the rectangular solid in the first octant bounded by the coordinate planes and the planes $x=1, y=3, z=1$.
6. Convert $\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} 3 d z r d r d \theta$ to rectangular coordinates in the order $d z d x d y$ and to spherical coordinates. Then evaluate one of the integrals.
7. Write the integral of $f(x, y, z)=6+4 y$ over the region in the first octant bounded by the cone $z=\sqrt{x^{2}+y^{2}}$, the cylinder $x^{2}+y^{2}=1$, and the coordinate planes in all three coordinate systems and evaluate one of the integrals.
8. Find the volume of the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=8$ and below by the plane $z=2$ using cylindrical and spherical coordinates.
9. Find the centroid of the "triangular" region bounded by the lines $x=2$ and $y=2$ and the hyperbola $x y=2$.
10. Use the substitution $u=x-y, v=y$ to show that

$$
\int_{0}^{\infty} \int_{0}^{x} e^{-s x} f(x-y, y) d y d x=\int_{0}^{\infty} \int_{0}^{\infty} e^{-s(u+v)} f(u, v) d u d v
$$

if f is any continuous function.

