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Abstract

Complex systems are ubiquitous, and often di�cult to control. As a toy model for the control
of a complex system, we take a system of coupled phase oscillators, all subject to the same periodic
driving signal. It has been shown previously that in the absence of coupling, this can result in
each oscillator attaining the frequency of the driving signal, with a phase o�set determined by the
oscillator's natural frequency. We consider a special case in which the coupling tends to destabilize
the phase con�guration to which the driving signal would send the oscillators in the absence of
coupling. In this setting we derive stability estimates that capture the trade-o� between driving and
coupling, and compare these results to the unforced version (i.e. the standard Kuramoto model).

Part I

Background

1 Motivation

A system is called complex if it exhibits surprising properties due to the structured interactions of its
components. Another term for this property is self-organizing. Examples of complex systems and some

1



of the emergent phenomena they can exhibit include:

1. The brain: epileptic seizures [8]

2. The world economy: �nancial collapse [14]

3. The global climate: rapid climate change [11]

4. Ecosystems: extinction events/algae blooms [10]

5. Social networks: memes [1]

6. The power grid: rolling blackouts [6]

7. Schooling/swarming/herding animals: school formation/dissolution [2]

8. Spatially extended chemical reactions (e.g. Belousov-Zhabotinsky): formation of spatial patterns
out of homogeneous background [4]

In many cases we would like the ability to predict, or even control, the onset of a certain collective phe-
nomenon. To that end, it is both theoretically and practically interesting to understand the fundamental
limits of control of a self-organizing system.

A theme running through many examples of collective phenomena is order winning out over disorder.
For example, in the case of a �ock of birds, each bird follows its own path - however, they have enough
impetus to follow each other that the entire �ock moves as one. In the case of �nancial collapse, each
publicly traded company has its own expenses and revenue streams, but are dependent enough on each
other that a large enough failure of a few companies can trigger a large-scale collapse.

There are situations in which global order is desirable for proper functioning of a system, such as
the very precise phase synchronization of electric currents in the power grid; there are also situations in
which global order has disastrous consequences, such as massively synchronized �ring of neurons in an
epileptic seizure, or mechanical resonance (such as aerodynamic �utter). In still other situations, the
value may be ambiguous, such as the schooling and de-schooling of a collection of �sh, or the meteoric
rise of a socio-political movement.

The key features I wish to focus on with respect to control of complex systems are the trade-o�s
between order and disorder. To this end, I propose to study a system of forced, coupled, nonlinear
oscillators, for reasons which I outline below.

2 Basic formalism and standard results

2.1 Entrainment

The �rst reason to consider a system composed of nonlinear oscillators is that their response to simple
control signals is both intricate and analytically tractable. In particular, they exhibit entrainment,
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which is when an oscillator moves with the frequency of the control signal, rather than its natural
frequency.

References [18, 19] and related work study a model of a forced phase oscillator governed by the
dynamics

ψ̇ = ω + Z(ψ)u

where ω denotes the natural frequency, u an external driving signal, and Z the phase response curve,
which de�nes the response of the oscillator to the external driving. This model can be derived as an
approximation to a nonlinear limit cycle oscillator in the regime of small forcing amplitude (see, e.g.
[12]). If we choose u = v(Ωt), where Ω ∼ ω and v is 2π-periodic, then we can approximate the dynamics
of ψ by shifting to a reference frame moving with frequency Ω and averaging the in�uence of the driving
signal over a whole driving period, and obtain

ϕ̇ = ∆ω + Λv(ϕ) (1)

where ∆ω := ω − Ω is the frequency detuning, and Λv(ϕ) =
´ 2π

0 Z(ϕ + θ)v(θ)dθ is the interaction

function. It can be shown that ϕ is a good approximation to ψ − Ωt as t→∞ [12].
The upshot of (1) is that provided ∆ω + Λv(ϕ) = 0 has a solution ϕ∗ and that Λ′v(ϕ

∗) < 0, ϕ
will settle down to ϕ∗ as t → ∞ (given appropriate initial conditions; see �gure 1). This means that
in certain cases, we can design an open-loop control policy (that is, one without feedback) to drive an
oscillator to a known phase o�set of the control signal.

Moreover, this ϕ∗ depends on ω. So, if we have a population of non-identical oscillators (that is,
di�erent ω but the same Z), we can obtain a diversity of phase o�sets by using a single driving signal
u = v(Ωt). In the context of order vs. disorder, then, the nature of this sort of control is somewhat dual.
On one hand, all the oscillators obtain the same frequency; on the other hand, they obtain di�erent
phases. One contribution we make is to quantitatively analyze the e�ect of one such control signal on
the onset of collective synchronization.

2.2 Synchronization

Synchronization is a classic example of collective behavior, and one which connects nicely to the en-
trainment behavior described above. The so-called Kuramoto model [7] is arguably the simplest known
system exhibiting a synchronization transition. In its original form, it consists of a large population of
non-identical phase oscillators coupled uniformly to each other by the sine function. That is, the model
reads

ϕ̇i = ωi +
K

N

N∑
j=1

sin(ϕj − ϕi)

where {ϕi} are the phases of the N oscillators, {ωi} their respective natural frequencies, and K ∈ R
represents the overall coupling strength.

A classic result about the Kuramoto model comes from passing to the limit of in�nitely many
oscillators, and treating the state of the system not as a con�guration of phases, but as a probability
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Figure 1: Example interaction function for a forced nonlinear oscillator. The sets A(ϕ∞1 ) and A(ϕ∞2 )
are basins of attraction for the asymptotic phase values ϕ∞1 and ϕ∞2 , given frequency detuning ∆ω.
Taken from SI of [19]

distribution over values of (ω, ϕ). Given the natural frequencies distributed according to a unimodal
density g(ω) centered (WLOG) at ω = 0, it can be shown [15] that there is a �phase transition� at a
coupling strength

K = Kc =
2

πg(0)

That is, when K < Kc, the system settles down to an incoherent state, where the phase distribution
is spread evenly around the unit circle. At K > Kc, the incoherent state is no longer stable, and the
system settles into a state where a subset of oscillators are synchronized with each other, and the phase
distribution obtains a singular (i.e. delta-function-like) piece.

3 Challenges and directions forward

The phase transition found in the Kuramoto model arises from a trade-o� of intrinsic disorder (i.e.
the distribution of natural frequencies g(ω)) and interactions which drive the system to order (i.e. the
coupling terms K sin(ϕi − ϕj)). On the other hand, the entrainment phenomena discussed in [18, 19]
are the e�ect of a force which may drive the system to a state which is ordered, but whose order is
di�erent than the order arising from coupling. Explicitly, applying a driving signal to a heterogeneous
population of oscillators will, in the absence of coupling, lead in general to unequal phases. I propose
to study the interplay of entrainment via driving and synchronization via coupling.
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3.1 Model description and methods

The following is based on research conducted during the summer of 2016 at the Center for Nonlinear
Studies, Los Alamos National Laboratory, in collaboration with Aric Hagberg and Anatoly Zlotnik.

I propose to study models of the form

ϕ̇i = ωi + Λv(ϕi) +K

N∑
j=1

AijG(ϕj − ϕi) (2)

where A = (Aij) is a matrix describing the coupling of individual oscillators, G the coupling function,
K represents the overall coupling strength, and Λv is the interaction function as described above, which
depends on the phase response curve Z and the driving signal v.

Given particular choices of Λv and g, I will investigate existence and linear stability of �xed points
in terms of the parameters K and (Aij), both for �nite N and in the limit N →∞.

The mathematical description of the N → ∞ limit follows the tradition of much of the seminal
work on the Kuramoto model, e.g. [17, 9, 7]. That is, we consider as a �state� of the system a family
of probability distributions (ρω) over the unit circle S1, indexed by natural frequency ω, which give the
density of oscillators with a given frequency ω and phase ϕ. Conservation of the number of oscillators
with each natural frequency leads to a continuity equation:

∂tρω +D(vωρω) = 0 (3)

where D denotes the derivative in the sense of distributions, and vω = vω(ϕ) is the phase velocity - that
is, ϕ̇ for an oscillator with natural frequency ω and phase ϕ. If we take the coupling to be all-to-all,
the phase velocity reads

vω = ω + Λv(ϕ) +K

ˆ

Ω

dµ(ω′)

ˆ

S1

dρω′(ϕ′)G(ϕ′ − ϕ)

where µ ∈ Pr(Ω) denotes the distribution of natural frequencies over the range of possible frequencies Ω.
Hence, equation (3) constitutes a nonlinear partial integro-di�erential equation for the state ρ = (ρω).
Analogously to the �nite-dimensional case, we can �nd �xed points by setting ∂tρω = 0 for (almost)
all ω ∈ Ω, linearize the dynamics around such �xed points, and �nd the spectra of the resulting linear
operators to draw conclusions about the stability of these �xed states. This technique was pioneered
by Strogatz and Mirollo in [17], where it was used speci�cally to analyze the stability of the incoherent
state (i.e. dρω = 1

2πdϕ for all ω).
One qualitative di�erence to note between the �nite- and in�nite-dimensional frameworks is that

in the former, a �xed point satis�es ϕ̇i = 0 for all i. However, a �xed point of the in�nite-dimensional
dynamics may have vω 6= 0, corresponding to ρω that are absolutely continuous with respect to Lebesgue
measure on S1. In other words, a ��xed state� of the in�nite-dimensional dynamics can describe drifting
oscillators, since the state is only ��xed� in a statistical sense. We should therefore be careful in our
comparison of the two versions of the dynamics.
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Part II

Proposed Research

4 Mean-�eld coupling meets perfect decoherence

To extremize the competition between entrainment and coupling, I will �rst consider the case where
G = sin, Aij = 1

N (that is, mean-�eld attractive coupling), and Λv is designed so that the entrained
phases {ϕ∗i } of the uncoupled system are spread evenly around the unit circle. This can be most easily
achieved if ωi = 2i

N − 1, i = 1, . . . , N , and

Λv(ϕ) =
−ϕ
π
, ϕ ∈ (−π, π]

so that ϕ∗i = πωi = 2πi
N − π (see �gure 2).

In the continuum limit, ωi = 2i
N − 1 is replaced by the density g(ω) = 1

2χ(−1,1]

4.1 Partial results

In �nite dimensions, one can derive bounds on the eigenvalues of the Jacobian via the Gershgorin circle
theorem. The most general bound states that if the coupling strength K satis�es the inequality

K <
−Λ′v(ϕ

∗
i )

2ki‖G′‖∞

then the �xed point ϕ∗ = (ϕ∗i ) is linearly stable. Here ‖ · ‖∞ denotes the supremum norm, and
ki =

∑
j Aij is the total (weighted) degree of oscillator i.

In the special case of global sine coupling (i.e. G = sin and Aij = 1
N ) and interaction function

Λ′v(ϕ) = −ϕ
π , which drives the system towards desynchronization, we have that the desynchronized

phase con�guration ϕ∗i = 2πi
N − π is linearly stable provided K < 1

π (which is an improvement on the
generic bound above by a factor of 2).

In in�nite dimensions, we can consider the case of global sine coupling with interaction function
Λ′v(ϕ) = −ϕ

π , and again linearize about the desynchronized �xed point. In this case, using machinery
developed extensively in [9], we can in fact exactly diagonalize the linearized dynamics. We �nd that
the eigenvalues are − 1

π and − 1
π + K

2 , which implies that the desynchronized �xed point is linearly stable
if K < 2

π and linearly unstable if K > 2
π . By virtue of the exact diagonalization, we can go further and

describe the modes (i.e. eigenvectors) that go unstable (but we omit this for now).
One important consequence is that we have found a critical point Kc = 2

π , which is in fact smaller
than that for the unforced Kuramoto model; with the same phase distribution, uniform on (−1, 1], the
unforced Kuramoto model has a critical point Kc = 2

πg(0) = 4
π . In other words, it is easier to bring the

system to phase synchronization when it is driven in such a way as to spread the phases evenly across
the unit circle. The di�erence, of course, is that in the driven system, the oscillators have already been
brought to frequency synchronization - in some sense, �halfway� to phase synchronization.
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Figure 2: Interaction function for perfect desynchronization
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4.2 Future work

During the Fall 2016 quarter, I plan to perform simulations to corroborate my results for �nite N and
to get a sense for convergence as N → ∞ to the expected mean-�eld behavior. I plan to collect these
results into a paper to be submitted to Nonlinearity during Winter quarter 2017.

5 Structured Coupling

It's well-known that the way in which oscillators are coupled can have profound e�ects on the manner in
which the population synchronizes. For example, it is found in [16] that the probability of a macroscopic
synchronized cluster of oscillators decays exponentially with system size if the coupling topology is any
�nite-dimensional lattice.

Other work, such as [5], has focused on the case of a �xed, �nite number of oscillators with arbitrary
coupling topology, obtaining existence, uniqueness, and stability results for the �nite-dimensional ODE
directly. These results give bounds on a critical coupling strength in terms of topological properties of
the coupling, such as the degree distribution and eigenvalues of the graph Laplacian.

My contribution will be to explain how the relationship between critical coupling strength and
network topology changes with the introduction of a common periodic driving signal. Based on the
intuition I've built so far, I expect that global entrainment will generally bring networks of coupled
oscillators closer to synchrony, and to eliminate the possibility of chaos, as is seen, for instance, in [13].

To achieve this goal, I will �rst gain intuition by numerical solution of the ODE (2) for various
adjacency matrices (Aij). I will then seek to explain my numerical results by extending the dynamical
systems-based approach of [5], and complement this with an appropriate statistical treatment along the
lines of the work I have already done.

I plan to address these problems during the Winter and Spring quarters of 2017, and collect the
results into a publication to be submitted in early summer 2017.

6 Multiple Timescales

An extensive theory was developed in [18, 3] for subharmonic entrainment of phase oscillators. That
is, an oscillator is driven by a signal at frequency NΩ, and the oscillator settles into a motion with
frequency MΩ, where N,M ∈ Z and N 6= M . This sort of resonance phenomenon is well-know in the
physics literature. However, it is not well understood what can happen when many subharmonically
forced oscillators are coupled to one another.

This sort of situation arises naturally in many real systems. For instance, the human body is a
composite of very many intricately interconnected units, many of which undergo repetitive motion on
a wide range of timescales, from neural �ring in the brain, to the beating of the heart, to breathing,
to eating, to the circadian rhythm, and beyond. Moreover, the whole system is subjected to external
stimulus of di�erent periods as well, such as the day/night cycle, to the work week, to the annual cycle
of the seasons.
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My goal in this task, therefore, is to understand the ways in which repetitive motions at di�erent
timescales can interfere with and reinforce each other, both in isolation and when subject to common
forcing.

As a �rst model to consider, we could imagine a population of oscillators split into two groups: fast
and slow. The fast oscillators have natural frequencies distributed around some characteristic frequency
Ω1, while the slow oscillators have natural frequencies distributed around Ω2 = 1

2Ω1. We could then
ask the question: is it possible to observe all fast oscillators attain frequency Ω1 and all slow oscillators
attain frequency Ω2 by only introducing coupling? Next, is this sort of frequency locking made more
probable by application of a common driving signal?

I intend to treat problems of this sort starting in the summer of 2017, possibly returning to Los
Alamos to collaborate with Anatoly Zlotnik. This work will continue into the 2017-2018 academic year,
culminating in a publication to be submitted around Winter/Spring 2018.

7 Proposed Timeline

Fall 2016 Complete Qualifying Exam; perform simulations; write and submit �rst paper.

Winter 2017 Begin analysis of structured coupling

Spring 2017 Continue analysis of structured coupling and draft second paper

Summer 2017 Submit second paper; return to Los Alamos and begin analysis of multiple timescales

Fall 2017 Continue work on multiple timescales; begin writing dissertation

Winter 2018 Draft paper on multiple timescales; continue writing dissertation

Spring 2018 Submit third paper; complete dissertation

Part III

Syllabus

1. Analysis (MAT 201ABC)

(a) Banach and Hilbert spaces

(b) Measure theory

2. Applied Math (MAT 207ABC)

(a) Dynamical Systems/Bifurcation theory

(b) Solution of ODEs & PDEs
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(c) Perturbation theory

3. Probability and Stochastic Processes (MAT 235AB, 236A)

(a) Central Limit Theorem

(b) Brownian Motion

(c) Stochastic integration

4. Information Theory (PHY 256AB)

5. Network Theory (MAE/ECS 253)

(a) Dynamics on Networks

(b) Network formation processes

(c) Random graphs
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