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Chapter 1

Building Up to the Exam

1.1 Your Graduate Education in Mathematics

Welcome to the Department of Mathematics at UC Davis. You have been
chosen as one of the elite individuals who will contribute to future mathemat-
ical knowledge as a member of our department. You are bright, capable and
incredibly intelligent. We hope that you will reach for the stars and find great
success over the coming years. The following mannual is written for graduate
students by graduate students. It is designed to help you navigate the annals
of Mathematical Analysis offered during your first 365 days in our Department.
The goal of this mannual is to aid you in passing the Analysis Preliminary
Exam with flying colors before the start of your second year. Use this manual
as one of the many tools you have available here at UC Davis to learn Analysis.
Your predicessors wish you luck and know that you will do spectacularly as you
embark on your Graduate Education in Mathematics here at UC Davis.

As is discussed in the program brochures, the graduate programs in
Pure and Applied Mathematics are loosely divided into a series of milestones
including

(a) passing the preliminary examination

(b) finishing your course work

(c) passing the qualifying examination

(d) writing your thesis

The department and faculty take responsibility to guide our Graduate Students
through each of these. However, no member of this department is more pre-
pared to help you achieve your goals and find success here than yourself. As
a mathematics graduate student you might consider dedicating yourself to this
endevour and make this part of your everyday life. The assumptions

“If I show up to class and do the homework, I will learn the material.”

and

“My teacher will teach me everything I need to know.”
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are as valid as the statement

1 + 1 = 3

In your first year here at Davis, you will be required to take the Math 201 series
which is comprised of the following three courses:

(a) Math 201A

(b) Math 201B

(c) Math 201C

Generally, these courses introduce the students to the topics in Analysis that the
department faculty feels we need (Steve Skholler, John Hunter, Becca Thomases
and others who contribute to syllabus creation). The ironic thing about most of
these courses is that, by themselves will not teach you math. To learn math is
your job! Go beyond the classroom. Find ways to be resourceful and to exceed
the requirements of each course you take. Do not assume that the one book you
might be reading for this class is sufficient. Do not assume that the leader of
your course is capable of teaching you what you need to know. Think instead
of the Faculty leading this course as a tour guide who is showing you some of
the scenary. It is your job to get out of the bus, get out your magnifying glass
and get dirty as you explore the environment. The Preliminary exams ask you
to demonstrate that you have done exactly this.

1.2 Exam Specifications

The Preliminary Exam in Analysis covers the following topics.

(a) Continuous function: Convergence of functions, Spaces of Continuous
functions; Approximations by Polynomials; Arezela Ascoli theorem

(b) Banach Spaces: Bounded linear operators; Different notions of BLO con-
vergence; Compact Operators; Dual Spaces; Finite Dimensional Banach
Spaces

(c) Hilbert Spaces: Orthogonalizty; Orthonormal bases; Parseval’s identity

(d) Fourier series: Convolution; Young’s Inequality; Fourier Series of differen-
tiable functions; Sobolev Embedding Theorem

(e) Bounded Linear Operators on a Hilbert Space: Orthogonal projections;
The dual of a Hilbert Space (Riesz representation); The adjiont of an
operator; Self-adjoint and unitary operators; Weak convergence theorem;
Hilbert-Schmidt operators; Functions of operators

(f) The spectral theory for compact, self adjoint operators: Spectrum; Com-
pact operators; the spectral theorem; Hilbert-Schmidt operators; Func-
tions of operators

(g) Weak derivatives
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(h) Fourier Transfrom: The Fourier Transform on L1 and L2; The Poisson
summation formula.

It is designed by the faculty here at UC Davis as a Rite of Passage for our
graduate students. Students who study and pass the preliminary exam have
accomplished their first major task as a graduate math student in our depart-
ment. // The road to success in this exam is worth a year of devout study.
The entire purpose of your first year of course work is to get you up to par with
this material by introducing formal mathematical arguments in a

1.3 Using These Solutions
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Chapter 2

References and Study Aids

2.1 Reference Texts in Analysis
A major difference between undergraduate and graduate education lies in the
expectations of the student. As graduate students, we are expected to have deft
command of topics of analysis from the basics of series and sequences through
weak convergences and Sobelev spaces. The classic assumption of the student

If I read the book, show up to lecture and do the homework, I can
adequately master the material

is hardly sufficient for graduate education. We must push ourselves to dive
deeper. We must find the energy and support to train ourselves in not only
problem solving skills but breadth and depth of knowledge. Passing your pre-
liminary exam indicates that you have achieved the minimal level of mastery
required by the department. However, take the first year of your course work to
go beyond the call of duty. Find a way to reach into the depths of this material
and learn more about the intricate details. Your hard work WILL pay off, both
on this exam and in your future mathematical endeavors.

Searching for deeper understanding in mathematics is a life time pursuit.
The professors in the department have made a living through this search. Take
a look at the book shelfs of your favorite math professor. How many books do
you see? With a probability that tends to one as your sample size increases,
you see a tens if not hundreds of mathematics reference books and text books.
These range from introductory to quite specfic. Consider making your journey
through analysis by emulating this trend. Get resources and references that
are going to help you succeed both in your course work and on these exams.
Do not assume that the texts required in the 201 series are sufficient for your
needs. Budget, borrow, sample and buy mathematical texts which you can use
to your advantage. In the following subsections you will find a small advertise-
ment about references to help you on your journey. Each of these books has
been used by previous graduate students here at UC Davis. They are highly
recommended by past graduate students as study tools. Consider each of these
as an investment that you can keep in your professional library.
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2.1.1 Berkeley Problems in Mathematics by Souza and
Silva

Figure 2.1: ISBN: 0387008926, Price: $34.95, Shields Library QA43 .D38 2001
Regular Loan

One of the most important skills in passing the preliminary exam is problem
solving in a fast and efficient manner. You must be able to recognize the heart of
the problem, recall relevant theorems and manipulate the antecedents to arrive
at the conclusion. All this in about 30 minutes. This book is designed to help
you become a better problem solver. Here is an Amazon.com review:

“This book collects approximately nine hundred problems that have appeared
on the preliminary exams in Berkeley over the last twenty years. It is an invalu-
able source of problems and solutions. Readers who work through this book
will develop problem solving skills in such areas as real analysis, multivariable
calculus, differential equations, metric spaces, complex analysis, algebra, and
linear algebra.”

"The Mathematics department of the University of California, Berkeley, has
set a written preliminary examination to determine whether first year Ph.D.
students have mastered enough basic mathematics to succeed in the doctoral
program. Berkeley Problems in Mathematics is a compilation of all the É ques-
tions, together with worked solutions É . All the solutions I looked at are com-
plete É . Some of the solutions are very elegant. É This is an impressive piece of
work and a welcome addition to any mathematicianÕs bookshelf." (Chris Good,
The Mathematical Gazette, 90:518, 2006)
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2.1.2 Foundations of Mathematical Analysis by Johnson-
baugh and Pfaffenberger

Figure 2.2: ISBN: 0486421740, Price: $22.95, Shields Library QA299.8 .J63

Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E.
Pfaffenberger is a great introduction to real analysis. Topics range from the ax-
iomatic definition of the real numbers through The Riesz Representation Theo-
rem and Lebesgue’s Intergral. For students who want to have a concise listing of
the foundations of analysis and a wide range of accessible practice problems for
extra support in Analysis, this is a good reference to have. Solutions to earlier
preliminary exam questions can be found in this text. For example

• Winter 2002 Problem 1 (pg 282)

• Winter 2002 Problem 2 (pg 247)

• Winter 2005 Problem 3 (pg 249)

From the preface

This book evolved from a one-year Advanced Calculus course that
we have given during the last decade. Our audiences have included
junior and senior majors and honors students, and on occasion, gifted
sophomores... Our intent is to teach students the tools of modern
analysis as it relates to further study in mathematics, especially
statistics, numerical analysis, differential equations, mathematical
analysis and functional analysis.

Because we believe that an essential part of learning mathematics
is doing mathematics, we have included over 750 exercises, some
containing several parts, of varying degree of difficulty. Hints and
solutions to selected exercises are given at the back of the book.
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2.1.3 Principles of Mathematical Analysis by Rudin

Figure 2.3: ISBN: 007054235X, Shields Reserves Reserves QA300 .R8 1976

Principles of Mathematical Analysis by Walter Rudin is a classic text in
this subject. Similar to the foundations of mathematical analysis above, Rudin
takes his readers on a tour of topics ranging from the axiomatic approach to the
Real and complex numbers through Function spaces and Lebesgues measure.
This book is particularly strong in its approach to function spaces and uniform
continuity. It can be used to establish the intuition for Lp spaces, which are
fundamental in understanding Sobolev spaces and weak convergences.
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2.1.4 Fourier Analysis by Kammler

Figure 2.4: ISBN: 0521709792, Price: $75.00, Shields Library QA403.5 .K36
2007

From the Preface:

This unique book provides a meaningful resources for applied math-
ematics through Fourier analysis. It develops a unified theory of dis-
crete and continuous (univariate) Fourier analysis, the fast Fourier
transform, and a powerful elementary theory of generalized func-
tions, including the use of weak limits. It then shows how these
mathematical ideas can be used to expedite the study of sampling
theory, PDEs, wavelets, probability, diffraction, etc. Unique fea-
tures include a unified development of Fourier synthesis/analysis for
functions on R,Tp,Z and PN ; an unusually complete development
of the Fourier transform calculus (for finding Fourier transforms,
Fourier series, and DFTs); memorable derivations of the FFT; a bal-
anced treatment of generalized functions that fosters mathematical
understanding as well as practical working skills; a careful introduc-
tion to Shannon’s sampling theorem and modern variations; a study
of the wave equation, diffusion equation, and diffraction equation
by using the Fourier transform calculus, generalized functions and
weak limits; an exceptionally efficient development of Daubechies’
compactly supported orthogonal wavelets;... A valuable reference
of Fourier analysis for a variety of scientific professionals, including
Mathematicians, Physicists, Chemists, Geologists, Electrical Engi-
neers, Mechanical Engineers and others.
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2.1.5 Real and Complex Analysis by Rudin

Figure 2.5: ISBN: 0070542341, Price: $98.99, Shields Library QA300 .R82 1987

Product Review (Amazon.com):

The first part of this book is a very solid treatment of introduc-
tory graduate-level real analysis, covering measure theory, Banach
and Hilbert spaces, and Fourier transforms. The second half, equally
strong but often more innovative, is a detailed study of single-variable
complex analysis, starting with the most basic properties of analytic
functions and culminating with chapters on Hp spaces and holomor-
phic Fourier transforms. What makes this book unique is Rudin’s
use of 20th-century real analysis in his exposition of "classical" com-
plex analysis; for example, he uses the Hahn-Banach and Riesz Rep-
resentation theorems in his proof of Runge’s theorem on approxima-
tion by rational functions. At times, the relationship circles back;
for example, he combines work on zeroes of holomorphic functions
with measure theory to prove a generalization of the Weierstrass ap-
proximation theorem which gives a simple necessary and sufficient
condition for a subset S of the natural numbers to have the property
that the span of {tn : ninS} is dense in the space of continuous
functions on the interval. Real and Complex Analysis is at times a
fascinating journey through the relationships between the branches
of analysis.
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2.1.6 Real Analysis by Folland

Figure 2.6: ISBN: 0471317160, Price: $129.99, Shields Library QA300 .F67 1999

From the Preface

The name “real analysis” is something of an anachronism. Originally
applied to the theory of functions of a real variable, it has come to
encompass several subject of a more general and abstract nature that
underlie much of modern analysis. These general theories and their
applications are the subject of this book, which is intended primarily
as a text for a graduate-level analysis course. Chapters 1 through
7 are devoted to the core material from measure and integration
theory, point set topology, and functional analysis that is part of
most graduate curricula in mathematics, together with a few related
but less standard items with which I think all analysts should be
acquainted. The last four chapters contain a variety of topics that
are meant to introduce some of the other branches of analysis and
to illustrate the uses of the preceding material. I believe these topics
are all interesting and important, but their selection in preference
to other is largely a matter or personal predilection.
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2.1.7 Analysis by Lieb and Loss

Figure 2.7: ISBN: 0821827839, Price:$35.00, Shields Library QA300.L54 2001

From the preface

Originally, we were motivated to present the essentials of modern
analysis to physicists and other natural scientists, so that some mod-
ern developments in quantum mechanics, for example, would be un-
derstandable. From personal experience we realize that this task
is a little different form the task of explaining analysis to students
of mathematics... Throughout, our approach is ‘hands on’, meaning
that we try to be as direct as possible and do not always strive for the
most general formulation. Occasionally we have slick proofs, but we
avoid unnecessary abstraction, such as the use of the Baire category
theorem or the Hahn-Banach theorem, which are not needed for Lp
spaces. Our preference is to understand Lp-spaces and then have the
reader go elsewhere to study Banach spaces generally, rather than
the other way around. Another noteworthy point is that we try not
to say, ‘there exists a constant such that...’. We usually give it, or
at least an estimate of it. It is important for students of the natural
sciences and mathematics, to learn how to calculate. Nowadays, this
is often overlooked in mathematics courses that usually emphasize
pure existence theorems.
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2.1.8 Applied Analysis by Hunter and Nachtergaele

Figure 2.8: ISBN: 9810241917, Price: $92.00, Shields Library QA300 .H93 2001

From the Preface

The aim of this book is to supply an introduction for beginning
graduate students to those parts of analysis that are most useful in
applications. The material is selected for its use in applied problems,
and is presented as clearly and simply as we are able, but without
the sacrifice of mathematical rigor...

We provide detailed proofs for the main topics. We make no attempt
to state results in maximum generality, but instead illustrate the
main ideas in simple, concrete settings. We often return to the same
ideas in different contexts, even if this leads to some repetition of
previous definitions and results. We make extensive use of examples
and exercises to illustrate the concepts introduced. The exercises
are at various levels; some are elementary, although we have omitted
many of the routine exercises that we assign while teaching the class,
and some are harder and are an excuse to introduce new ideas or
application not covered in the main text. One area where we do not
give a complete treatment is Lebesgue measure and integration. A
full development of measure theory would take us too far afield, and
in any event, the Lebesgue integral is much easier to use than to
construct.
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2.1.9 Measure Theory by Cohn

Figure 2.9: ISBN: 0817630031, Price: $55.10, Shields Library QA312 .C56

Product Review (Amazon.com)

Intended as a straightforward introduction to measure theory, this
textbook emphasizes those topics relevant and necessary to the study
of analysis and probability theory. The first five chapters deal with
abstract measure and integration. At the end of these chapters, the
reader will appreciate the elements of integration. Chapter 6, on
differentiation, includes a treatment of changes of variables in Rd.
A unique feature of the book is the introductory, yet comprehensive
treatment of integration on locally Hausdorff spaces, of the analytic
and Borel subsets of Polish spaces, and of Haar measures on locally
compact groups. Measure Theory provides the reader with tools
needed for study in several areas of current interest, in particular
harmonic analysis and probability theory, and is a valuable reference
tool.

This text is a beautiful introduction to measure theory and should be used
to deepen the readers understanding of Lieb and Loss chapter 1 and Hunter and
Natergaele Chapter 12. It comes in very useful
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2.1.10 Functional Analysis by Reed and Simon

Figure 2.10: ISBN: 0125850506, Price: $123.21, Phy Sci Engr Library
QC20.7.F84 R43 1980 Regular Loan

Product Review (Amazon.com)

This book is the first of a multivolume series devoted to an exposition
of functional analysis methods in modern mathematical physics. It
describes the fundamental principles of functional analysis and is
essentially self-contained, although there are occasional references
to later volumes. We have included a few applications when we
thought that they would provide motivation for the reader. Later
volumes describe various advanced topics in functional analysis and
give numerous applications in classical physics, modern physics, and
partial differential equations.
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Chapter 3

Fall 2002

Author: Luke Grecki

3.0.11 Problem 6

Problem 6

Let fn : R→ R be a differentiable mapping for each n, with |f ′n(x)| ≤ 1 for all
n, x. Show that if g(x) is a function such that

lim
x→∞

fn(x) = g(x)

then g(x) is a continuous function.

Proof:
Let x0 ∈ R. By the mean value theorem and the bound on f

′

n we see

|fn(x)− fn(x0)| ≤ sup
x
|f
′

n(x)| · |x− x0| ≤ |x− x0|

Now let ε > 0 and δ =
ε

3
. For any x satisfying |x − x0| ≤ δ we know |fn(x) −

fn(x0)| ≤ ε

3
from the above. The pointwise convergence of fn to g implies that

there exist N ∈ N such that

|fn(x)− g(x)| ≤ ε

3

|fn(x0)− g(x0)| ≤ ε

3

for all n ≥ N . By adding and subtracting terms and using the triangle inequality
we find

|g(x)− g(x0)| ≤ |g(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− g(x0)| ≤ ε

which shows that g is continuous. 2
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3.0.12 Problem 7

Problem 7

(a) State the Stone-Weierstrass theorem in the context of C(X,R), where X
is a compact Hausdorff space.

(b) State the Radon-Nikodym theorem, as it applis to a pair of σ-finite mea-
sures µ and ν defined on a measurable space (X,M).

(c) State the definitions of the terms normal topological space and absolutely
continuous function.

Proof:
Obtained by opening the right book and turning to the right page.

2
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3.0.13 Problem 8

Problem 8

Let f : X → Y be a mapping between topological spaces X and Y . Let E be a
base for the topology of Y . Show that if f−1(E) is open in X for each E ∈ E ,
then f is continuous.

Proof:
Let V ⊂ Y be open. We must show that f−1(V ) ⊂ X is open. Since E is a base
for the topology of Y we can write

V =
⋃
α

Eα

for some sets Eα ∈ E . Since unions are preserved under inverse images we have

f−1(V ) = f−1

(⋃
α

Eα

)
=
⋃
α

f−1(Eα)

By hypothesis every f−1(Eα) is open, and since Y is a topological space their
union must be open. Therefore f−1(V ) is open and f is continuous. 2
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3.0.14 Problem 9

Problem 9

Let F : R → R be an increasing and right-continuous function, and let µ be
the associated measure, so that µ(a, b] = F (b) − F (a) for a < b. Prove that
µ({a}) = F (a) − F (a−) and µ[a, b] = F (b) − F (a−) for all a < b. [Notation:
F (a−) := limx→a− F (x)].

Proof:
To show the former consider the sequence of nested sets

(a− 1, a] ⊃ (a− 1

2
, a] ⊃ (a− 1

3
, a] ⊃ · · ·

Since µ is a measure and µ(a− 1, a] <∞ we have

µ({a}) = µ

( ∞⋂
n=1

(a− 1

n
, a]

)

= lim
n→∞

µ(a− 1

n
, a]

= lim
n→∞

F (a)− F (a− 1

n
)

= F (a)− F (a−)

which is what we wanted. Note that the latter limit F (a−) exists since F is
increasing and F (a) <∞.

To show the latter we observe that [a, b] = {a}
⊔

(a, b]. Using the additivity
of µ we get

µ[a, b] = µ({a}) + µ(a, b]

= F (b)− F (a−)

2
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3.0.15 Problem 10

Problem 10

Let f be a B[0,1]2-measurable real-valued function such that the partial deriva-

tive
∂f

∂t
(x, t) exists for each (x, t) ∈ [0, 1]2 andM := sup

∣∣∣∣∂f∂t (x, t)

∣∣∣∣ <∞. Prove

that
∂f

∂t
(x, t) is measurable, and that for all t ∈ [0, 1],

d

dt

∫ 1

0

f(x, t) dx =

∫ 1

0

∂f

∂t
(x, t) dx

Proof:
First we show that

∂f

∂t
(x, t) is measurable as a function of x. By definition,

∂f

∂t
(x, t) = lim

t′→t

f(x, t′)− f(x, t)

t′ − t

Since f is B[0,1]2-measurable its restriction ft(x) = f(x, t) is B[0,1]-measurable.
The sum and product of measurable functions is a measurable function so the
quotients

qt′(x) =
f(x, t′)− f(x, t)

t′ − t
=
f ′t(x)− ft(x)

t′ − t
are measurable. Furthermore the pointwise limit of measurable functions is
measurable so

∂f

∂t
(x, t) = lim

t′→t
qt′(x)

is B[0,1]-measurable as a function of x. To show the equality we first rewrite the
left hand side as a limit

d

dt

∫ 1

0

f(x, t) dx = lim
n→∞

∫ 1

0

n×
[
f

(
x, t+

1

n

)
− f(x, t)

]
dx

By the mean value theorem we have∣∣∣∣n× [f (x, t+
1

n

)
− f(x, t)

]∣∣∣∣ ≤ ∣∣∣∣n× [∂f∂t (x, t′)× 1

n

]∣∣∣∣ ≤M
where t < t′ < t+ 1

n . The last inequality follows from the hypothesized bound

on
∂f

∂t
. Note that the constant function g(x) ≡ M is in L1[0, 1]. By applying

Lebesgue’s dominated convergence theorem and using the mean value theorem
again we conclude

d

dt

∫ 1

0

f(x, t) dx =

∫ 1

0

lim
n→∞

n×
[
f

(
x, t+

1

n

)
− f(x, t)

]
dx

=

∫ 1

0

∂f

∂t
(x, t) dx

2
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3.0.16 Problem 11

Problem 11

Let m denote the Lebesgue measure on R, fix f ∈ L1(R,BR,m), and define a
function G : R→ R by the formula

G(t) =

∫
R
f(x+ t) dm(x)

Prove that G is a continuous function.

Proof:
First note that since f ∈ L1 the integral∫

R
f(x) dm(x)

is well-defined and finite. The Lebesgue measure m is translation invariant,
which implies that ∫

R
f(x+ t) dm(x) =

∫
R
f(x) dm(x)

for all t ∈ R. Therefore G(t) is constant, and thus continuous.
2
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Chapter 4

Winter 2002

Author: Adam Sorkin

4.0.17 Problem 1

Statement: Problem Number 1

Show that the `2 norm is indeed a norm.

Proof:
Recall that `2(N) is the space of all square summable sequences of complex
numbers. Letting ai denote one such sequence, let us temporarily denote

f(ai) =

√∑
i

|ai|2.

To show that f is indeed a norm, we must have that f is positive definite,
homogeneous, and satisfies the triangle inequality. Positive definiteness follows
immediately from the definition, and similarly homogeneity. As usual, only the
third takes any real work. To prove that f(ai + bi) ≤ f(ai) + f(bi), we begin
with the simple observation that

0 ≤ (|aibj | − |ajbi|)2.

Expanding this out and summing over i 6= j gives∑
i 6=j

|aiajbibj | ≤
∑
i 6=j

|ai|2|bj |2

If we add to both sides the quantity
∑
i |aibi|2 and rearrange slightly, we get

(∑
i

|aibi|

)2

≤

(∑
i

|ai|2
)
·

∑
j

|bj |2
 = f(ai)

2f(bi)
2.
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Taking roots gives
∑
i |aibi| ≤ f(ai)f(bi), and using the triangle inequality on

complex numbers gives

f(ai + bi)
2 =

∑
i

|ai + bi|2

≤
∑
i

(
|ai|2 + |bi|2 + 2|aibi|

)
≤ f(ai)

2 + f(bi)
2 + 2f(ai)f(bi)

≤ (f(ai) + f(bi))
2

Taking roots gives the desired inequality. 2
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4.0.18 Problem 2

Statement: Problem Number 2

Prove that C([0, 1]), the space of continuous functions on [0, 1], is not complete
in the L1 metric: ρ(f, g) =

∫
|f(x)− g(x)|dx.

Proof:
Consider the sequence of functions fn : [0, 1]→ R defined by fn(x) = xn. Clearly
these functions are continuous and integrable, hence in C([0, 1]). Moreover, fn
is Cauchy, for we can compute ‖fn‖ = 1/(n+ 1).
Now fn has no limit in C([0, 1]), for any L1-limit of fn must be a pointwise limit
of fn. But fn converges pointwise to a discontinuous function; specifically it’s
pointwise limit is zero on [0, 1) and 1 at 1. hence we see 2
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4.0.19 Problem 3

Statement: Problem Number 3

Let C([0, 1]) be the space of continuous function son the nit interval with the
uniform norm and let R[x] be the subspace of polynomials. Give an example
of an unbounded linear transformation T : R[x]→ R.

Proof:
Let T : R[x] → R be defined by evaluation at r, for some r > 1. That is, for
some p ∈ R[x], T (p) = p(r). It is clear the evaluation mapping is linear, and
we can bound its norm below using the polynomial xn. Notice xn has norm 1
in the uniform norm, and so ‖T‖ ≥ ‖Tx‖ = rn. Taking n large shows T has
unbounded norm. 2
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4.0.20 Problem 4

Statement: Problem Number 4

Let X be a metric space. Prove or disprove the following:

(a) If X is compact, then X is complete.

(b) If X is complete, then X is compact.

Proof:
The first statement is true; the second false. To see compactness implies com-
plete, we use the sequential characterization of compactness. Now let xn be a
Cauchy sequence in X. Then by compactness, xn contains a subsequence xk(n)
which converges to some x0 in X. Hence xn → x0, for

|xn − x0| ≤ |xn − xk(n)|+ |xk(n) − x0|.

Therefore xn has a limit in X, and so X is complete. Now complete does
not imply compact in a metric space. A familiar counterexample is the real
numbers, which are certainly not compact, and are complete (though we do not
prove this). 2
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4.0.21 Problem 5

Statement: Problem Number 5

Let H be a Hilbert space and V a linear subspace. Show that V ⊥⊥ = V .

Proof:
Recall that V ⊥ is a closed linear space; this follows immediately from the lin-
earity and continuity of 〈·, ·〉. Next recall there is a direct sum orthogonal
decomposition of the Hilbert space H = V ⊥ ⊕ V ⊥⊥. Our final observation
is that V ⊥ = (V )⊥; again this follows directly from properties of the inner
product. Thus we have H = V ⊕ (V )⊥ = V ⊕ V ⊥. Then the isomorphism
V ⊥ ⊕ V ∼= V ⊥ ⊕ V ⊥⊥ gives the equality V = V ⊥⊥. 2
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4.0.22 Problem 6

Statement: Problem Number 6

State Jensen’s inequality. Show that the function ϕ : x → log(1/x) is convex.
Suppose that ai ≥ 0 and pi > 0 such that the pi sum to 1. Prove that

ap11 · · · apnn ≤ a1p1 + · · ·+ anpn.

Proof:
Jensen’s inequality is as follows. Let (X,µ) be a finite measure space, with
Ω =

∫
X

1µ < ∞. Let f : X → R be integrable, and ϕ : R → R a convex
function. Then

ϕ(
1

Ω

∫
X

fdµ) ≤ 1

Ω

∫
X

ϕ ◦ fdµ

To see that ϕ : (0,∞) → R as defined above is convex, notice it is twice
differentiable. Then as ϕ

′′
= 1/x2 > 0, it is a convex function.

Finally, consider the measure space X = {pi} with measure
∫
X
fdµ =∑

f(pi)pi. Let ϕ be as defined above, and notice the function f : X → R
defined by f(pi) = ai is integrable. From Jensen’s inequality we get

− log(
∑
i

aipi) ≤
∑
i

−pi log ai.

Exponentiating both sides gives the desired inequality. 2
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Chapter 5

Winter 2005

Author: Jeffrey Anderson

5.0.23 Problem 1

Statement: Problem 1

Show that the mapping T : R→ R defined by

T (x) =
π

2
+ x− arctan(x)

has no fixed points in R and that

|T (x)− T (y)| ≤ |x− y| for all distinct x, y ∈ R

Why does this example not contradict the contraction mapping theorem?

Proof:
Suppose hoping for contradiction that there exists a fixed point for the map
T : R→ R. Then, by definition of fixed point, there is some x ∈ R such that

T (x) = x

⇒T (x) =
π

2
+ x− arctan(x) = x

⇒π

2
− arctan(x) = x− x

⇒ arctan(x) =
π

2

Then, under our assumption, we have that their exists some x ∈ R such that

tan(
π

2
) = x

This is not possible, since tan is not defined at π
2 .

Now, let us consider

|T (x)− T (y)|
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for any two distinct x, y ∈ R. Without loss of generality assume that x < y.
We know by the mean value theorem, we have there exists some z ∈ (x, y) such
that

‖T (x)− T (y)‖ = T ′(z)|x− y|

Then, we also have that for any x ∈ R

T ′(x) =
d

dx

(π
2

+ x− arctan(x)
)

= 0 + 1− 1

1 + x2

We can then bound T ′(z) < 1 since 1
1+z2 ≥ 0. We conclude that

|T (x)− T (y)| = T ′(z)|x− y|
< 1|x− y|
= |x− y|

This proves the second part of our claim.
To substantiate the last claim of this problem, consider the statement of

the Contraction mapping theorem. In the mapping defined above, there is no
c ∈ (0, 1) such that

|T (x)− T (y)| < c|x− y|

for all x, y ∈ R.
Assume, hoping for contradiction, that the exists a c ∈ (0, 1) such that

|T (x)− T (y)| < c|x− y|

(ie assume that the antecedents of the contraction mapping theorem hold). We
know by the Mean Value Theorem taught in Math 21A here at UC Davis, for
all x, y ∈ R, there exists some ξ ∈ R such that

|T (x)− T (y)| = T ′(ξ)|x− y|

= 1− 1

1 + ξ2︸ ︷︷ ︸
T ′(ξ)

|x− y|

We will explicitly exhibit a pair (x, y) which defies this inequality, thus leading
to a contradiction and proving that no such c can exist. Let y = 0. Then we
have

|T (x)− T (0)| =
∣∣∣T (x)− π

2

∣∣∣
=
∣∣∣π
2

+ x− arctan(x)− π

2

∣∣∣
= |x− arctan(x)|
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We note that for x > 0 we have x − arctan(x) > x − π
2 by the properties of

arctan(x). Now choose

x =
π

2(1− c)

We note that π
2(1−c) > 0π/2. Then we have

|T (x)− T (0)| = |x− arctan(x)|

> x− π

2

=
π

2(1− c)
− π

2

=
πc)

2(1− c)
= cx

Then, given we have a c, we have found a pair (x, y) of points that defies the
bound. This contradicts the assumption that our function T above satisfies the
contraction mapping theorem. With this, we have shown each of the three parts
of this problem. 2
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5.0.24 Problem 2

Statement: Problem 2

Prove that the vector space C([a, b]) is seperable. Here and below, C([a, b])
is the vector space of continuous functions f : [a, b] → R with the supremum
norm.

Proof:

This is exactly what we wanted to show. 2
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5.0.25 Problem 3

Statement: Problem 3

Suppose that fn ∈ C([a, b]) is a sequence of functions converging uniformly to
a function f . Show that

lim
n→∞

b∫
a

fn(x)dx =

b∫
a

f(x)dx

Give a counterexample to show that the pointwise convergence of continuous
functions fn to a continuous function f does not imply convergence of the
corresponding integrals.

Proof:
Let fn ∈ C([a, b]) be a sequence of functions converging uniformly to a function
f . Let ε > 0. Since fn converges uniformly, we have that there is an N ∈ N
such that for all n ≥ N

|fn(x)− f(x)| < ε

b− a

for all x ∈ [a, b]. Assuming n ≥ N , we have∣∣∣∣∣∣
b∫
a

fn(x)dx−
b∫
a

f(x)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫
a

(fn(x)− f(x))dx

∣∣∣∣∣∣ by linearity of the integral

≤
b∫
a

|fn(x)− f(x)|dx bringing absolute value inside integral

<

b∫
a

ε(b− a)dx by assumption on n

=
ε

b− a

b∫
a

1dx

=
ε

b− a
(b− a)

= ε

This proves the first part of our problem. For the second part of this problem,
consider the sequence fn ∈ C([0, 1]) which linearly interpolates the following
secquence of points

• for x ∈ (0, 1/2n), fn is defined by the line through the points (0, 0) and
(1/2n, 2n)

• for x ∈ (1/2n, 1/2n−1), fn is defined by the line through the points
(1/2n, 2n) and (1/2n−1, 0)
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• for x ∈ (1/2n−1, 0), fn is defined by the constant function 0.

To explicitly formulate this sequence of functions, we rely on the following:
Given two points (x1, y1) and (x2, y2) we can define the interpolating line by
computing

m =
y2 − y1
x2 − x1

(y − y1) = m(x− x1)

Then, this sequence of function is defined by

fn(x) =


22nx if 0 ≤ x < 2−n

−22n(x− 1/2n) + 2n if 2−n ≤ x < 2−(n−1)

0 if 2−(n−1) ≤ x ≤ 1

We notice that this sequence of functions converges pointwise to zero, yet the
integral of each fn is one. This demonstrates exactly what we would like. 2
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5.0.26 Problem 4

Statement: Problem 4

Let l2(Z) denote the complex Hilbert space of sequences xn ∈ C, n ∈ Z such
that

∞∑
n=−∞

|xn|2 <∞

Define the shift operator S : l2(Z)→ l2(Z) by

S((xn)) = (xn+1)

Show that S has no eigenvalues.

Proof:
Let xn ∈ `2(Z) as described above. Assume, hoping for contradiction, that
the shift operator does have an eigenvalue λ ∈ C. By definition we have the
following equalities:

S((x0)) = x0+1 = x1 = λx0

S((x1)) = x1+1 = x2 = λx1 = λ2x0

S((x2)) = x2+1 = x3 = λx2 = λ3x0

With this initial observation, we see that the assumption that λ ∈ C is an eigen-
value immediately mandates a very unique structure to the sequence {xn}∞n=−∞.
Specifically, assume that n is a positive integer. Then

xn = λnx0

Similarly if m is a negative integer, then

xm = λmx0

Without loss of generality, we can assume |x0| = 1 (if not, we know that the
sequence convergence and hence we can use the constant multiple rule for con-
verging sequences taught in Math 21C here at UC Davis and normalize to enforce
this condition).

Then we have
∞∑
−∞
|xn|2 =

∞∑
−∞
|λ|2n

The sequence {xn}∞n=−∞ illustrates that λ = 0 is can never be an eigenvalue.
Similarly, if 0 < |λ| < 1 we have that the sum

0∑
−∞
|λ|2n
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diverges. Similarly, if |λ| > 1, we know that

∞∑
0

|λ|2n

diverges because it fails the test for convergence. Last, if λ = 1, we have that the
sum of all ones diverges because it fails the convergence test. We have reached
a contradiction for any λ ∈ C. It must be that S has no eigenvalues.s 2
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5.0.27 Problem 5

Statement: Problem 5

Consider the initial value problem

u′(t) = |u(t)|α, u(0) = 0

Show that the solution to this problem is unique if α > 1 and not unique if
0 ≤ α < 1

Proof (exercise 2.13 in Applied Analysis):
Suppose that α > 1. In this case we reference theorem 2.26 of Applied Analysis.
We must check that the antecedents of this theorem are preserved:

In this case, let us define

f(t, u) = u′(t) = |u(t)|α

We note that this function is continuous on the rectangle

R = {|t| < T, |u| < L}

With this, we see that f is Lipschitz and we get that the solution of our IVP is
unique.

Let 0 ≤ α < 1. We will validate the second claim by direct computation.
Specifically, we find that

u(t) =

{
0 t ≤ a
(a− α)

1
1−α (t− α)

1
1−α t ≥ a

where a is some constant. We also note that u(t) = 0 is a solution to the same
initial value problem. We have explicitly listed two seperate solutions and thus
have shown our second desired property.

Suppose that α > 1. In this case We see that This is exactly what we wanted
to show. 2
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5.0.28 Problem 6

Statement: Problem 6

Let H be a Hilbert Space, H0 a dense linear subspace of H, {xn}∞n=1 ⊂ H and
x ∈ H such that

i. there exists M > 0 such that ‖xn‖ ≤M for all n

ii. lim
n→∞

〈xn, y〉 = 〈x, y〉 for all y ∈ H0

Prove that {xn}∞n=1 converges in the weak topology of H

Proof: Theorem 8.40 in Applied Analysis
Let all the assumptions in the problem statement hold. Let y ∈ H. Let ε > 0.
We want to show that for that

lim
n→∞

〈xn, y〉 = 〈x, y〉

We can rewrite this in the form

lim
n→∞

〈xn − x, y〉 = 0

using the definition of the inner product. We will prove our statement in this
form.

Since y ∈ H and H0 is dense in H, we have that there is some χ ∈ H0

such that ‖χ − y‖ < ε (this is an immediate consequence of the definition of
density). Since χ ∈ H0, we know by our assumptions above

lim
n→∞

〈xn, χ〉 = 〈x, χ〉

We can rearrange this using the same ideas as above to see

lim
n→∞

〈xn − x, χ = 0 (5.1)

We see that there is some postive integer N such that

| 〈xn − x, χ〉 | < ε

for all n > N by the definition of weak convergence.
Now let us consider

|〈xn − x, y〉| = |〈xn − x, y − χ+ χ〉|
= |〈xn − x, y − χ〉|+ |〈xn − x, χ〉|
≤ |〈xn − x, y − χ〉|+ ε using the assumption (5.1)
≤ ‖xn − x‖‖χ− y‖+ ε applying Cauchy Schwarz Inequality
≤ (‖xn‖+ ‖x‖)‖χ− y‖+ ε by the triangle inequaltiy
≤ (M + ‖x‖)‖χ− y‖+ ε since xn is bounded
≤ (M + ‖x‖)ε+ ε by choice of χ

This is exactly what we wanted to show. 2
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Chapter 6

Fall 2007

6.0.29 Problem 1
Author: David Renfrew

Statement: Problem 1

Suppose that f : [0, 1]→ R is continuous. Prove that

lim
n→∞

∫ 1

0

f(xn)dx

exists and evaluate the limit. Does the limit alway exist if f is only assumed
to be integrable?

Proof:
Let g(x) := supx f(x), because f is continuous this exist and g is integrable
with f(x) ≤ g(x) so we can apply the LDCT:

lim
n→∞

∫ 1

0

f(xn)dx =

∫ 1

0

lim
n→∞

f(xn)dx =

∫ 1

0

f( lim
n→∞

xn)dx = f(0)

The limit does not necessiarly exist if f is only integrable.
Consider f(x) = x−1/2 which is integrable but∫ 1

0

f(xn)dx =

∫ 1

0

x−n/2dx =

(
1

1− n/2

)
x1−n/2

∣∣∣1
0

This integral does not converge for n > 1.

This establishes our claim 2
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6.0.30 Problem 2
Author: David Renfrew

6.0.31 Problem 1
Author: David Renfrew

Statement: Problem 2

Suppose that for each n ∈ Z, we are given a real number ωn. For each t ∈ R,
define a linear operator T (t) on 2π-periodic function by

T (t)

(∑
n∈Z

fne
inx

)
=
∑
n∈Z

eiωntfne
inx,

where f(x) =
∑
n∈Z fne

inx with fn ∈ C.
(a) Show that T (t) : L2(T)→ L2(T) is a unitary map.
(b) Show that T (s)T (t) = T (s+ t) for all s, t ∈ R.
(c) Prove that if f ∈ C∞(T), meaning that it has continuous derivative of all
orders, then T (t)f ∈ C∞(T).

Proof:
(a) First observe by the density of the trig polynomials T (t) is onto.
Then let f, g ∈ L2(T).
Then compute the inner product using the Fourier coefficients.

〈T (t)f, T (t)g〉 =
∑
n∈Z

(
eiωntfn

) (
eiωntgn

)
=
∑
n∈Z

fngn

= 〈f, g〉

(b) By direct computation:

T (s)T (t)f = T (s)
∑
n∈Z

eiωntfne
inx

=
∑
n∈Z

eiωnseiωntfne
inx

=
∑
n∈Z

eiωns+tfne
inx

= T (s+ t)f

(c) This follows by Sobolev embedding.
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6.0.32 Problem 3
Author: David Renfrew

Statement: Problem 3

Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), (Z, ‖ · ‖Z) be Banach spaces, with X compactly
imbedded in Y , and Y continuously imbedded in Z (meaning: X ⊂ Y ⊂ Z;
bounded sets in (X, ‖·‖X) are precompact in (Y, ‖·‖Y ); and there is a constant
M such that ‖x‖Z ≤ M‖x‖Y for every x ∈ Y ). Prove that for every ε > 0
there exists a constant C(ε) such that

‖x‖Y ≤ ε‖x‖X + C(ε)‖x‖Z for every x ∈ X.

Proof:
Assume for contradiction that there is an ε for which such a C(ε) does not exist.
Then there exist a sequence xn with X-norm 1 such that

‖xn‖Y > ε+ n‖xn‖Z

By the compact embedding the xn’s have a convergent subsequence in the Y
norm, let us pass to this subsequence.
This means ‖xn‖Y will converge to a constant, but this means the above in-
equality will only be preserved if ‖xn‖Z goes to zero.
This implies xn → 0 in all spaces. This contradicts the assumption that
‖xn‖Y > ε, so the desired inequality is proved.
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6.0.33 Problem 4
Author: David Renfrew

Statement: Problem 4

Let H be the weighted L2-space

H =

{
f : R→ C

∣∣∣∣∣
∫
R

e−|x||f(x)|2dx <∞

}

with inner product

〈f, g〉 =

∫
R
e−|x|f(x)g(x)dx.

Let T : H → H be the translation operator

(Tf)(x) = f(x+ 1).

Compute the adjoint T ∗ and the operator norm ‖T‖.

Proof:
First the adjoint computation: Let f, g ∈ H.

〈Tf, g〉 =

∫
R
e−|x|Tf(x)g(x)dx

=

∫
R
e−|x|f(x+ 1)g(x)dx

=

∫
R
e−|x−1|f(x)g(x− 1)dx

=

∫
R
e−|x|f(x)e|x|−|x−1|g(x− 1)dx

= 〈f, e|x|−|x−1|g(x− 1)〉

So T ∗ g(x) = e|x|−|x−1|g(x− 1).

Now we compute the norm:
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6.0.34 Problem 5
Author: David Renfrew

Statement: Problem 5

a) State the Rellich Compactness Theorem for the space W 1,p(Ω) for Ω ⊂ Rn.
(b) Suppose that {fn}∞n=1 is a bounded seqeunce in H1(Ω) for Ω ⊂ R3 open,
bounded, and smooth. Show that there exists an f ∈ H1(Ω) such that for a
subsequence {fnl}∞l=1,

fnlDfnl ⇀ fDf weakly in L2(Ω),

where D =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
denotes the weak gradient operator.

Proof:

(a) Let Ω ⊂ Rn be an open, bounded Lipschitz domain. Let 1 ≤ p ≤ n and
p∗ := np

n−p .
Then W 1,p(Ω) is compacted embedded in Lq(Ω) for all 1 ≤ q < p∗.

(b)
Since fn is bounded in H1 so fn and Dfn are bounded in L2.

Bounded sets are weakly precompact so after passing to a subsequence there
exist an f and g such that fn ⇀ f and Dfn ⇀ g. Additionally g = Df .

fnDfn = (fn − f)Dfn + fDfn

The Sobolev conjugate p∗ = np
n−p = 3∗2

3−2 = 6 > 2, so we can apply Rellich’s
Theorem, after passing to a subseqence, to say that fnl → f strongly in L2.
Since Dfn are bounded (fn − f)Dfn converges to 0 in L2. So we have:

lim
l→∞

fnlDfnl = lim
l→∞

(fnl − f)Dfnl + fDfnl

⇀ 0 + fDf

As desired.
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Author: David Renfrew

Statement: Problem 6

Let Ω := B(0, 12 ) ⊂ R2 denote the open ball of radius 1
2 . For x = (x1, x2) ∈ Ω,

let

u(x1, x2) = x1x2 [log (| log(|x|)|)− log log 2] where |x| =
√
x21 + x22.

(a) Show that u ∈ C1(Ω).

(b) Show that ∂2u
∂x2
j
∈ C(Ω). for j = 1, 2, but that u 6∈ C2(Ω).

(c) Using the elliptic regularity theorem for the Dirichlet problem on the disc,
show that u ∈ H2(Ω).

Proof:

First we compute the derivaties:

∂

∂x1
u(x1, x2) = x2 [log (| log(|x|)|)− log log 2] +

x1x2
| log(|x|)|

log(|x|)
| log(|x|)|

1

|x|
x1
|x|

∂

∂x2
u(x1, x2) = x1 [log (| log(|x|)|)− log log 2] +

x1x2
| log(|x|)|

log(|x|)
| log(|x|)|

1

|x|
x2
|x|
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Chapter 7

Winter 2008

7.0.35 Problem 1
Author: Jeffrey Anderson

Statement: Problem Number

Define fn : [0, 1]→ R by

fn(x) = (−1)nxn(1− x)

a. Show that
∞∑
n=0

fn converges uniformly on [0, 1]

b. Show that
∞∑
n=0
|fn| converges pointwise on [0, 1] but not uniformly

Proof:
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7.0.36 Problem 2
Author: Jeffrey Anderson
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7.0.37 Problem 3
Author: Jeffrey Anderson

Statement: Problem 3

Suppose thatM is a (nonzero) closed linear subspace of a Hilbert space H and
φ :M→ C is a bounded linear functional onM. Prove that there is a unique
extension of φ to a bounded linear function on H with the same norm.

Proof:
The first thing to notice is that this problem is known as the Hahn-Banach
Theorem for Closed linear subspaces. With this in mind, the way to establish
this result is:

• construct the norm preserving extension explicitly to the larger subspace

• Invoke the axiom of choice to establish that the construction above gives
our desired extension

Then, let H be a Hilbert space, letM be a closed linear subspace of H, let
φ :M→ C be a bounded linear functional onM. We want to show

i. there exists a norm preserving extension of φ

ii. this extension is unique

First we will show that an extension exists. Let x0 ∈ H such that x0 /∈ M,
Let

Y1 = 〈x0,M〉 = span{x0,M}

We know that for any y ∈ Y1, we have y = x + λx0 for x ∈ M,λ ∈ C. Let us
define a mapping Φ : Y1 → C by

Φ(y) = Φ(x+ λx0)

= φ(x) + λα

for some α ∈ C.
We can check that this mapping is linear:

Φ(y + z) = Φ ((x+ λx0) + (w + µw0))

= φ(x+ w) + (λ+ µ)α

= φ(x) + λα+ φ(w) + µα

= Φ(y) + Φ(z)

The trick of this problem is to choose α so that the extended funcitonal has
norm 1.

Recall by definition

‖Φ‖op = sup
‖y‖=1

Φ(y)‖H

= sup
‖x+λx0‖=1

‖φ(x) + λα‖C
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We can bound ‖Φ‖op above by one using the inequalities

‖Φ(y)‖op = ‖φ(x) + λα‖C
≤ ‖x+ λx0‖H
= ‖y‖H

Now, to find the lower bound, take x = −λx ∈M. Then

|φ(−λx) + λα| = | − λφ(x) + λα|
≤ ‖ − λx+ λx0‖H

This is true if and only if

|λ||φ(x)− α| ≤ |λ|‖x− x0‖H
⇔ |φ(x)− α| ≤ ‖x− x0‖H

From here, we would like to solve for α such that

− ‖x− x0‖H ≤ φ(x)− α ≤ ‖x− x0‖H
⇔− φ(x)− ‖x− x0‖H ≤ −α ≤ −φ(x) + ‖x− x0‖H
⇔α ∈ [Φ(x)− ‖x− x0‖,Φ(x)− ‖x− x0‖]

We introduce the notation

Ax = Φ(x)− ‖x− x0‖
Bx = Φ(x) + ‖x− x0‖

We also let Σ = [Ax,Bx] ⊂ R. We note that Σ 6= ∅ ⇐⇒ Ax ≤ Bx for all
x, y ∈M. We note that

φ(x)− φ(y) = φ(x− y)

= ‖x− y‖
= ‖x+ x0 − x0 − y‖
≤ ‖x− x0‖+ ‖y − x0‖

Then we have

φ(x)− ‖x− x0‖ ≤ φ(y) + ‖y − x0‖

With this we see there is an extension that perserves the norm. We must now
establish uniqueness.
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7.0.38 Problem 4
Author: Mohammad Omar
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7.0.39 Problem 5
Author: Jeffrey Anderson

Statement: Problem 5

Let 1 ≤ p < ∞ and let I = (−1, 1) denote the open interval in R. Find the
values of α as a function of p for which the function |x|α ∈W 1,p(I)

Proof:

We want to find the values of α as a function of p such that (|x|)α ∈W 1,p(I).
By the definition of the space W 1,p(I), we know we must solve three related
problems. These problems include

(a) Find the values of α in terms of p such that (|x|)α ∈ Lp(I)

(b) Find the values of α in terms of p such that d
dx (|x|)α ∈ Lp(I) (where we

are taking the weak derivative here)

(c) Compare these values of α to find the correct interval we desire

First, by the definition of the Lp-norm, we have

‖(|x|)α‖p =

 1∫
−1

|(|x|)α|pdm

1/p

=

 1∫
0

xpαdm

1/p

by symmetry of |x| around x = 0

We know by a theorem discussed in Math 21B here at UC Davis
∞∫
1

xβdm <∞⇔ β ∈ (−1,∞)

From here we notice that there is a relationship between the integrability of
x1/β on (0, 1) and the integrability of xβ on the interval (1,∞).

Then
1∫

0

xµdm <∞⇔ µ ∈ (−1, 0) ∪ [0,∞)

We conclude that xpα has finite integral on (0, 1) if and only if pα > −1 or
α > −1

p
Second, we have that if the weak derivative of this function exists, it is equal

(almost everywhere) to the classical derivative of our function. We know, by
definition

(|x|)α =

 (−x)α if x < 0
0 if x = 0
xα if x > 0
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This function is classically differentiable everywhere except x = 0. The classic
derivative of this function using methods taught in Math 21A here at UC Davis
is given by

d

dx
(|x|)α =

{
−α(−x)α−1 if x < 0

αxα−1 if x > 0

Now we take the Lp norm of the weak derivative ∂(|x|)α:

‖∂(|x|)α‖p =

 1∫
−1

|α(|x|)α−1|pdm

1/p

= 2α

 1∫
0

(x)p(α−1)dm

1/p

We conclude

‖∂(|x|)α‖p <∞⇔ p(α− 1) > −1

⇔ α > 1− 1

p

Last, we conclude that the only way that |x|α ∈W 1,p(I) is if α > 1− 1
p
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7.0.40 Problem 6
Author: Mohammad Omar
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Chapter 8

Fall 2008

8.0.41 Problem 1
Author: Bailey Meeker

Statement: Problem 1

Prove that the dual space of c0 is `1, where c0 =
{
{xn}∞n=1| lim

n→∞
xn = 0

}
Proof:
We can restate this problem as such: Let T ∈ c∗0. Then there is a {an}∞n=1 ∈ `1
such that T ({xn}∞n=1) =

∑
xnan for all {xn}∞n=1 ∈ `1.

Let δm,n(x) =

{
1 : n = m
0 : n 6= m

. Let an = T (δn) where δn = (0, 0, . . . , 0, 1, 0, . . .)

with the 1 appearing in the nth coordinate. Let {xn}∞n=1 ∈ c0. Finally, define
{yn}∞n=1 by the folowing: yn =

∑n
k=1 xkδk.

Step 1: Show that T can be identified with some sequence an.
By the definition above,

T (yn) = T

(
n∑
k=1

xkδk

)
=

n∑
k=1

T (xkδk) =

n∑
k=1

xkT (δk) =

n∑
k=1

xkak.

Note that
∑n
k=1 T (xkδk) =

∑n
k=1 xkT (δk) since T is a bounded linear functional

on c0, and thus scalar multiples come through. Consider

yn − {xn}∞n=1 =

n∑
k=1

xkδk − {xn}∞n=1 = (x1, x2, . . . , xn, 0, . . .)− {xn}∞n=1

= (x1, x2, . . . , xn, 0, . . .)− {xn}∞n=1 = (0, . . . , 0,−xn+1,−xn+2, . . .).

Then consider the c0 norm of this difference:

‖yn − {xn}∞n=1‖c0 = lub |yn − xn∞n=1| = lub{|xk| |k ≥ n}.

Then if we take the limit as n→∞ we see that

limn→∞ ‖yn − {xn}∞n=1‖c0 = limn→∞lub{|xk| |k ≥ n} = limsupn→∞{xn}∞n=1 = limn→∞xn = 0.
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Therefore limn→∞yn = {xn}∞n=1 in c0. We assumed that T is a bounded linear
functional, therefore T is continuous. Then

T ({xn}∞n=1) = T (limn→∞yn) = limn→∞T (yn) = limn→∞

n∑
k=1

xkak =

∞∑
k=1

xkak.

Step 2: Show that the sequence {an}∞n=1 ∈ `1.
To prove this, we will use the fllowing sequence: {γm,n}∞m=1 where

γm,n =

 1 m ≤ n and am ≥ 0
0 m ≤ n and am < 0
0 m > n

Consider

T ({γm,n}∞m=1) =

n∑
k=1

γk,nak =

n∑
k=1

|ak|

by construction. We know that {γm,n}∞m=1 ∈ c0 since γm,n = 0 for all n > m.
Specifically we note that ‖γm,n‖c0 = 1 by construction.

2
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8.0.42 Problem 2
Author: Mohamed Omar

Statement: Problem 2

Let {fn}∞n=1 be a sequence of differentiable functions on a finite interval [a, b]
such that the function themselves and their derivatives are uniformly bounded
on [a, b]. Prove that {fn}∞n=1 has a uniformly converging subsequence.

Proof:

Since [a, b] is a compact subset of R, the Arzela-Ascoli Theorem implies that
{fn} ⊂ C([a, b]) has a uniformly convergent subsequence if we can prove it
is both uniformly bounded and equicontinuous. We are given that {fn} is
uniformly bounded, so it suffices to show it is equicontinuous. We prove the
stronger result that the {fn} is uniformly equicontinuous.

Since {f ′n} are uniformly bounded, there is a constant C > 0 such that
|f ′n(x)| ≤ C for all n and for all x ∈ [a, b]. Now let ε > 0, fn and x, y ∈ [a, b] be
arbitrary and such that |x− y| < ε

C
. By the Mean Value Theorem, there exists

c ∈ (x, y) such that f ′n(c) =
fn(x)− fn(y)

x− y
. From this we have

|fn(x)− fn(y)| = |f ′n(c)||x− y| < C
( ε
C

)
= ε.

This argument is independent of our choice of x, y and n, so we conclude {fn}
is uniformly equicontinuous. 2
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8.0.43 Problem 3
Author: Mohamed Omar

Statement: Problem 3

Let f ∈ L1(R) and Vf be the closed subspace generatred by the translates of
f : {f(· − y)|∀y ∈ R}. Suppose f̃(ξ0) = 0 for some ξ0. Show that h̃(ξ0) = 0 for
all h ∈ Vf . Show that if Vf = L1(R), then f̃ never vanishes.

Proof:

Recall that, upto scaling,

f̂(ξ0) =

∫
R
f(x)e−2πixξ0 dx.

Now suppose f̂(ξ0) = 0. Then for any h = f(· − y) for y ∈ R, we have

ĥ(ξ0) =

∫
R
f(x− y)e−2πixξ0 dx

=

∫
R
f(x)e−2πi(x+y)ξ0 dx

= e−2πiyξ0
∫
R
f(x)e−2πixξ0 dx

= e−2πiyξ0 f̂(ξ0)

= 0.

Let Wf be the linear space spanned by functions h = f(· − y) for y ∈ R. Since
the Fourier Transform is linear, it follows ĥ(ξ0) = 0 for all h ∈ Wf . Now any
function h ∈ Vf is either in Wf (in which case we just showed ĥ(ξ0) = 0),
or is the L1 limit of functions ĥn ∈ Wf , in which case ĥ(ξ) = 0 because L1

convergence implies pointwise convergence. 2
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8.0.44 Problem 4
Author: Mohamed Omar

Statement: Problem 4

a. State the Stone-Weierstrass theorem for a compact Hausdorff space X.

b. Prove that the algevra generated by function so the form

f(x, y) = g(x)h(y)

where g, h ∈ C(X) is dense in C(X ×X).

Proof:

[a.] Let X be a compact Hausdorff space, and A be a subalgebra of C(X)
which contains a non-zero constant function, and separates points (i.e. for all
x1, x2 ∈ X, there exists f ∈ C(X) such that f(x1) 6= f(x2)). Then A is dense
in C(X).

[b.] First note that if X is a compact Hausdorff space, then so is X×X. Let
A be the algebra generated by functions of the form g(x)h(y) where g, h ∈ C(X).
Since for any pair g, h ∈ C(X) we have g(x)h(y) ∈ C(X×X), A is a subalgebra
of C(X × X). The constant function g(x, y) = 1 for all (x, y) ∈ X × X is
a member of A since it is the product of the constant function g(x) = 1 and
itself. By the Stone-Weierstrass Theorem it suffices to show that A separates
points. Let (x1, y1), (x2, y2) ∈ X ×X be different points. Then at least one of
the following is true: x1 6= x2 or y1 6= y2. Assume without loss of generality
that x1 6= x2. Since X is Hausdorff, there is an open set U containing x1 that
does not contain x2. By Urysohn’s Lemma, there is a function g ∈ C(X) that
is 1 on U and 0 otherwise. This g, together with the constant function h = 1 on
X, gives the function gh ∈ C(X ×X) that separates (x1, y1) and (x2, y2) (since
gh(x1, y1) = 1 and gh(x2, y2) = 0). 2
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8.0.45 Problem 5
Author: Mohamed Omar

Statement: Problem 5

For r > 0, define the dilation drf : R → R of the function f : R → R by
drf(x) = f(rx) and the dialation drT of the distribution R ∈ D′(R) by

〈drT, φ〉 =
1

r

〈
T, d1/rφ

〉
for all test functions φ ∈ D(R).

• Show that the dialation of a regular distribution Tf , given by

〈Tf , φ〉 =

∫
f(x)φ(x)dx

agrees with the dilation of the corresponding function f

• A distribution is homogeneous of degree n if drT = rnT . Show that the
δ−distribution is homogeneous of degree −1

• IF T is a homogeneous distribution of degree n, prove that the derivative
T ′ is a homogeneous distribution of degree n− 1.

Proof:

[a.] Let φ ∈ D(R) be arbitrary. We have

〈drTf , φ〉 =
1

r
〈Tf , d1/rφ〉

=
1

r

∫
f(x)φ

(x
r

)
dx

=

∫
f(rx)φ(x) dx

= 〈Trf , φ〉

Since φ is arbitrary, we conclude drTf = Trf .

[b.] Let φ ∈ D(R) be arbitrary. We have

〈drδ, φ〉 =
1

r
〈δ, d1/rφ〉

=
1

r
φ(r · 0) (by definition of δ)

=
1

r
φ(0)

= 〈1
r
δ, φ〉

Since φ is arbitrary, we conclude drδ = 1
r δ and hence δ is homogeneous of degree

-1.
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[c.] Let T ′ be the derivative of a distribution T . Let φ ∈ D(R) be arbitrary.
Assume that T is homogeneous of degree n. We have

〈drT ′, φ〉 =
1

r
〈T ′, d1/rφ〉

= −1

r
〈T, (d1/rφ)′〉

= −1

r
〈T, 1

r
d1/r(φ

′)〉

= − 1

r2
〈T, d1/r(φ′)〉

= − 1

r2
〈T, d1/rφ′〉

= −1

r
〈drT, φ′〉

= −1

r
〈rnT, φ′〉 (since T has degree n)

= rn−1 (−〈T, φ′〉)
= 〈rn−1T ′, φ〉.

Since φ is arbitrary, it follows drT ′ = rn−1T and hence T ′ is homogeneous of
degree n− 1.
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8.0.46 Problem 6
Author: Mohamed Omar

Statement: Problem 6

Calculus of variations.

Proof:
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Chapter 9

Winter 2009

Author: Ricky Kwok

9.0.47 Problem 1

Statement: Problem 1

Let 1 < p < 2.

(a) Given an example of a function f ∈ L1(R) such that f /∈ Lp(R) and a
function g ∈ L2(R) such that g /∈ Lp(R).

(b) If f ∈ L1(R) ∩ L2(R), prove that f ∈ Lp(R).

Proof:
Let f(x) = x−1/pχ(0,1). Then

||f ||1 = lim
ε→0

∫ 1

ε

x−1/p dx =
x1−1/p

1− 1/p

∣∣∣1
0

=
p

p− 1
<∞.

However,

||f ||pp = lim
ε→0

∫ 1

ε

x−1 dx = lim
ε→0

ln(x)
∣∣∣1
ε

= − lim
ε→0

log(ε) =∞.

Hence f ∈ L1, but f /∈ Lp.

Let g(x) = x−1/pχ(1,∞). Since p < 2, we have 1/p > 1/2, or 2/p > 1, so that
1− 2/p < 0.

||g||2 =

∫ ∞
1

x−2/p dx =
x1−2/p

1− 2/p

∣∣∣∞
1

= lim
x→∞

x1−2/p

1− 2/p
− 1

1− 2/p
=

p

p− 2
.

However,

||g||pp =

∫ ∞
1

x−1 dx =∞.
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Thus, g ∈ L2, but g /∈ Lp.

Now suppose f ∈ L1 ∩ L2. Define

A = {x ∈ R : |f(x)| > 1}.

Then we have

||f ||pp =

∫
R
|f(x)|p dx

=

∫
A

|f(x)|p dx+

∫
Ac
|f(x)|p dx

≤
∫
A

|f(x)|2 dx+

∫
Ac
|f(x)|1 dx ≤ ||f ||22 + ||f ||11

Therefore, if f ∈ L1 and f ∈ L2, then f ∈ Lp(R). 2
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9.0.48 Problem 2

Statement: Problem 2

(a) State the Weierstrass approximation theorem.

(b) Suppose that f : [0, 1]→ R is continuous and∫ 1

0

xnf(x) dx = 0

for all nonnegative integers n. Prove that f = 0.

Proof:

TheWeierstrass approximation theorem states that for a closed interval [a, b],
the space of continuous functions on this interval C([a, b]) can be uniformly
approximated with polynomials, i.e. there exists a sequence (fm) ∈ Π([a, b])
such that

lim
m→∞

||fm − f ||unif = lim
m→∞

sup
x∈[a,b]

|fm(x)− f(x)| = 0,

where Π([a, b]) is the space of polynomials with domain [a, b].

Since f is continuous over [0, 1], we can take a sequence of polynomials
(fm) : [0, 1] → R to approximate f uniformly. Then we can pass limit under
the integral sign (see Exercise 2.2).

lim
m→∞

∫ 1

0

|fm(x)f(x)−f(x)f(x)| dx ≤
∫ 1

0

lim
m→∞

|fm(x)−f(x)||f(x)| dx ≤ lim
m→∞

||fm−f ||unif
∫ 1

0

|f(x)| dx.

This shows
∫ 1

0
f(x)2 dx = 0. Since (f(x))2 ≥ 0 for all x, and f is continuous,

f(x) = 0 for all x, i.e. f ≡ 0. 2
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9.0.49 Problem 3

Statement: Problem 3

(a) Define strong convergence, xn → x, and weak convergence, xn ⇀ x, of a
sequence (xn) in a Hilbert space H.

(b) If xn ⇀ x weakly in H and ||xn|| → ||x||, prove that xn → x strongly.

(c) Give an example of a Hilbert space H and a sequence (xn) in H such that
xn ⇀ x weakly and

||x|| < lim inf
n→∞

||xn||.

Proof:

(a) Let || · || denote the norm in the Hilbert space. Strong convergence is

lim
n→∞

||xn − x|| = 0.

Let (·, ·) denote the inner product in the Hilbert space. Weak convergence
is

lim
n→∞

(xn, y) = (x, y) ∀y ∈ H.

(b) Suppose xn ⇀ x and ||xn|| → ||x||. Then ||xn||2 → ||x|| and (xn, x) →
(x, x) = ||x||2 and (x, xn) = (xn, x)→ (x, x) = ||x||2 since x ∈ H,

||xn − x||2 = (xn − x, xn − x) = (xn, xn)− (xn, x)− (x, xn) + (x, x)

→ ||x||2 − ||x||2 − ||x||2 + ||x||2 = 0.

Hence, ||xn − x||2 → 0, therefore ||xn − x|| → 0.

(c) Let H = L2(R), be the set of all square-integrable functions on the real
line. Define the sequence gn = χ(n,n+1) denote the characteristic function
on the intervals (n, n+ 1). Then we have for every n ∈ N,

||gn|| =
∫ n+1

n

12 dx = 1.

I claim gn ⇀ 0. To see this, let f ∈ L2(R). Then

||f ||22 =

∫ ∞
−∞
|f(x)| dx =

∞∑
n=−∞

∫ n+1

n

|f(x)|2 dx.

Now, Bessel’s inequality states that
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lim
n→±∞

∫ n+1

n

|f(x)|2 dx = 0

Then the inner product of gn with f is given by

(gn, f) =

∫ n+1

n

f(x) dx =: yn.

Notice that by Jensen’s inequality,

∫ n+1

n

|f(x)|2 dx ≥
(∫ n+1

n

f(x) dx
)2

.

So we have
∫ n+1

n
f(x) dx→ 0 as n→∞. Therefore,

(gn, f)→ 0 ⇒ gn ⇀ 0.

Then ||0|| = 0 < 1 = lim infn→∞ ||gn||. Therefore gn = χ(n,n+1) satisfies
the weak convergence to 0 and ||0|| < lim infn→∞ ||gn|| = 1. 2

68



9.0.50 Problem 4

Statement: Problem 4

Suppose that T : H → H is a bounded linear operator on a complex Hilbert
space H such that

T ∗ = −T, T 2 = −I

and T 6= ±iI. Define

P =
1

2
(I + iT ), Q =

1

2
(I − iT ).

(a) Prove that P,Q are orthogonal projections on H.
(b) Determine the spectrum of T , and classify it.

Proof:

(a) Notice

P 2 =
1

4
(I + iT )(I + iT ) =

1

4
(I + iT + iT + i2T 2) =

1

4
(2I + 2iT ) = P,

and similarly Q2 = Q. Then for all elements y ∈ H,

(Px, y) =

(
x

2
+
iTx

2
, y

)
=

1

2
(x, y) +

−i
2

(Tx, y)

=
(
x,
y

2

)
+
−i
2

(x, T ∗y) =

(
x,
y

2
+
−i
2
T ∗y

)
=

(
x,

(
1

2
I +

1

2
iT

)
y

)
= (x, Py),

and similarly (Qx, y) = (x,Qy). Therefore P and Q are orthogonal pro-
jections (projections and self-adjoint).

(b) To find the spectrum of T, σ(T ), we first find the resolvent of T, ρ(T ) and
then σ(T ) = C \ ρ(T ).

ρ(T ) = {λ ∈ C : λI − T : H → H, is one-to-one and onto} .

We use the fact that an operator is one-to-one and onto if and only if it
is invertible. So, we must find all values λ such that (λI − T )−1 is well-
defined. Using T 2 = −I, we take a guess that (λI − T )−1 = c(λI + T ) for
some c ∈ C. To solve for c,

I = (λI − T )c(λI + T ) = c(λ2I − T 2) = c(λ2 + 1)I.
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We can see that c = 1
λ2+1 . Hence,

(λI − T )−1 =
λI + T

1 + λ2
.

This operator is well-defined for all values λ ∈ C \ {±i}. However, since
T 6= ±iI, ±i /∈ σ(T ), the resolvent set is consists of all complex numbers
ρ(T ) = C. Therefore, σ(T ) = ∅. 2
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9.0.51 Problem 5

Statement: Problem 5

Let S(R) be the Schwartz space of smooth, rapidly decreasing functions f :
R→ C. Define an operator H : S(R)→ L2(R) by

(Ĥf)(ξ) = isgn(ξ)f̂(ξ) =

{
if̂(ξ) if ξ > 0

−if̂(ξ) if ξ < 0,

where f̂ denotes the Fourier transform of f .

(a) Why is Hf ∈ L2(R) for any f ∈ S(R)?

(b) If f ∈ (R) and Hf ∈ L1(R), show that∫
R
f(x) dx = 0.

[Hint: you may want to use the Riemann-Lebesgue Lemma.]

Proof:

(a) The function f is in any Lp space since f is in the Schwartz space. In
particular, f ∈ L1 ∩ L2, implying the Fourier transform of f is in L2 and
Plancherel’s theorem holds:

||f̂ ||2 = ||f ||2.

Notice that the L2 norm of Ĥf is equal to the L2 norm of f̂ because

∣∣Ĥf(ξ)
∣∣ =

∣∣f̂(ξ)
∣∣ ∀ξ ∈ R.

Combining these two, we have

||Hf ||2 = ||Ĥf ||2 = ||f̂ ||2 = ||f ||2 <∞.

Therefore, Hf ∈ L2.

(b) Since Hf ∈ L1, then the Riemann-Lebesgue Lemma states that Ĥf is
continuous and Ĥf(ξ)→ 0 as |ξ| → ∞. In particular Ĥf is continuous at
0, so

i · lim
ξ→0+

f̂(ξ) = lim
ξ→0+

Ĥf(ξ) = lim
ξ→0−

Ĥf(ξ) = -i · lim
ξ→0−

f̂(ξ).

Since the left hand side is equal to the negative of the right hand side,
these two must both equal zero. Hence, f̂(0) = 0. But by the definition of
the Fourier transform,
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0 = f̂(0) =

∫
R
e2πi0xf(x) dx =

∫
R
f(x) dx.

Therefore f has zero integral. 2
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9.0.52 Problem 6

Statement: Problem 6

Let ∆ denote the Laplace operator in R3.

(a) Prove that

lim
ε→0

∫
Bcε

1

|x|
∆f(x) dx = 4πf(0), ∀f ∈ S(R3)

where Bcε is the complement of the ball of radius ε centered at the origin.

(b) Find the solution u of the Poisson problem

∆u = 4πf(x), lim
|x|→∞

u(x) = 0

for f ∈ S(R3).

Proof:
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Chapter 10

Fall 2009

10.0.53 Problem 1
Author: Owen Lewis

Statement: Problem Number 1

For ε > 0, let ηε denote the family of standard mollfiers on R2. Given u ∈
L2(R2), define the function

uε = ηε ∗ u in R2.

Prove that
ε‖Duε‖L2 ≤ C‖u‖L2 ,

where the constant C depends on the mollifier, not on u.

Proof:
By definition, we have that

uε(x) = ηε ∗ u =

∫
R2

ηε(x− y)u(y)dy.

Taking the partial derivative with respect to xi, and utilizing the Lebesgue
Dominated Convergence theorem yields

∂xiuε(x) = ∂xi

∫
R2

ηε(x− y)u(y)dy =

∫
R2

∂xiηε(x− y)u(y)dy.

Now, by Young’s inequality for convolutions (letting p = 2, q = 1 and r = 2)
we have

‖∂xiuε‖L2 ≤ ‖∂xiηε‖L1‖u‖L2 . (10.1)

Now, examining ‖∂xiηε‖L1 , we have

‖∂xiηε‖L1 =

∫
R2

|∂xiηε(x)|dx

=

∫
R2

∣∣∣∣ 1

ε2
∂xiη

(x
ε

)∣∣∣∣ dx.
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Making the change of variables y = x
ε , we have that ∂xi = 1

ε∂x1
and dx = ε2dy.

Therefore the above expression becomes

1

ε

∫
R2

|∂yiη (y)| dy.

Because η ∈ C∞c (R2), there exists a constant C that bounds the above expres-
sion. Thus we have

‖∂xiuε‖L2 ≤ C

ε
.

Combining this with (10.1), and noting that i is arbitrary gives the result

ε‖Duε‖L2 ≤ C‖u‖L2 .

This is exactly what we wanted to show. 2
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10.0.54 Problem 2
Author: Owen Lewis

Statement: Problem Number

Let B(0, 1) ⊂ R3 denote the unit ball {|x| < 1}. Prove that u = log |x| ∈
H1(B(0, 1)).

Proof:
We begin by showing that u ∈ L2(B(0, 1)). We first note that for |x| < 1, then
|log (|x|)| ≤ 1

|x| . Therefore, utilizing polar coordinates we have

‖u‖L2(B(0,1)) =

∫
B(0,1)

u2dx

=

∫
B(0,1)

log2(|x|)dx

≤
∫
B(0,1)

1

|x|2
dx

= C

∫ 1

0

1

r2
r2dr

= C.

Therefore, u ∈ L2(B(0, 1)). Now a quick calculation shows that

∂xiu =
1

|x|
xi
|x|
,

and thus
Du =

x

|x|2
.

By definition,

‖Du‖L2L2(B(0,1)) =

∫
B(0,1)

Du ·Dudx

=

∫
B(0,1)

x · x
|x|4

dx

= C

∫ 1

0

r2

r4
r2dr

= C.

Therefore Du ∈ L2(B(0, 1)). Combined with the previous result we have that
u ∈ H1(B(0, 1)).
This is exactly what we wanted to show. 2
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10.0.55 Problem 6
Author: Owen Lewis

Statement: Problem Number

Prove that a normed linear space is complete if and only if every absolutely
summable sequence is summable.

Proof:
First, we assume that our space is complete. Let {xn} be an absolutely summable
sequence. Now define ym =

∑m
n=1 xn. We have that

‖ym − yk‖ = ‖
k∑

n=m

xn‖ ≤
k∑

n=m

‖xn‖.

Because {xn} is absolutely summable, we know that
∑∞
n=1 ‖xn‖ = M , and thus

for any ε > 0, we can choose m sufficiently large such that
m∑
n=1

xn < ε.

Combined with the previous inequality, this shows that the sequence {ym} is
Cauchy. By completeness, it has a limit x. Therefore we have

∞∑
n=1

xn = lim
m→∞

m∑
n=1

xn = lim
m→∞

ym = x.

This shows that every absolutely summable sequence is summable.
Now assume that every absolutely summable sequence is summable. Let

{xn} be a Cauchy sequence. By passing to a subsequence if necessary, we can
claim that ‖xk − xk−1‖ ≤ 2−k. Now define y1 = x1, and yk = xk − xk−1 for
k > 1. By definition,

m∑
k=1

yk = xm.

Furthermore, by construction
∞∑
k=1

‖yk‖ =

∞∑
k=1

‖xk − xk−1‖ ≤
∞∑
k=1

2−k <∞.

Thus the sequence {yk} is absolutely summable. By assumption it is therefore
summable, with limit x. Therefore,

lim
k→∞

xk =

∞∑
k=1

yk = x,

which is to say that the subsequence {xk} is convergent. However, if any Cauchy
sequence has a convergent subsequence, then the entire sequence is convergent.
Thus, our original Cauchy sequence is convergent, and xn → x. This shows that
the space is complete, and completes the proof.
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Chapter 11

Winter 2010

Author: Nathan Hannon

11.0.56 Problem 1

Statement: Problem 1

Let (X, d) be a complete metric space, x̄ ∈ X and r > 0. Set D := {x ∈ X :
d(x, x̄) ≤ r}, and let f : D → X satisfying

d(f(x), f(y)) ≤ k d(x, y)

for any x, y ∈ D, where k ∈ (0, 1) is a constant.

Prove that if d(x̄, f(x̄) ≤ r(1− k) then f admits a unique fixed point.

(Guidelines: Assume the Banach fixed point theorem, also known as the con-
traction mapping theorem.)

Proof:
Let x ∈ D. Then

d(f(x), x̄) ≤ d(f(x), f(x̄)) + d(f(x̄), x̄)

≤ k d(x, x̄) + r(1− k)

≤ rk + r(1− k)

= r.

Hence f(x) ∈ D. Since x was arbitrary, we may write f : D → D, and f satisfies
the hypotheses of the Banach fixed point theorem. We conclude that f admits
a unique fixed point. 2
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11.0.57 Problem 2

Statement: Problem 2

Give an example of two normed vector spaces, X and Y , and of a sequence
of operators, {Tn}∞n=0, Tn ∈ L(X,Y ) (L(X,Y ) is the space of the continuous
operators from X to Y , with the topology induced by the operator norm) such
that {Tn}∞n=0 is a Cauchy sequence but it does not converge in L(X,Y ).

(Notice that Y cannot be a Banach space otherwise L(X,Y ) is complete.)

Proof:
Let X = R and let Y ⊂ L1([−1, 1]) be the subspace consisting of continuous
functions. We note that any operator T ∈ L(X,Y ) is determined completely by
T (1) and that ‖T‖ = ‖T (1)‖. It therefore suffices to find a Cauchy sequence fn
in Y that does not converge in Y .

Let fn = x
1

2n+1 ∈ Y . Then fn → sgnx in L1([−1, 1]). Hence (fn) is Cauchy
in L1([−1, 1]) and hence in Y . However, because sgnx 6∈ Y , (fn) does not
converge in Y . 2
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11.0.58 Problem 3

Statement: Problem 3

Let (an) be a sequence of positive numbers such that

∞∑
n=1

a3n

converges. Show that
∞∑
n=1

an
n

also converges.

Proof:
We note that (an) ∈ `3(N). Furthermore, since

∞∑
n=1

1

n
3
2

<∞,

we have
(
1
n

)
∈ ` 3

2 (N). By Hölder’s inequality,

∞∑
n=1

an
n
≤ ‖(an)‖3

∥∥∥∥( 1

n

)∥∥∥∥
3
2

< ∞.

This is exactly what we wanted to show. 2
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11.0.59 Problem 4

Statement: Problem 4

Suppose that h : [0, 1]2 → [0, 1]2 is a continuously differentiable funcion from
the square to the square with a continuously differentiable inverse h−1. Define
an operator T on the Hilbert space L2([0, 1]2) by the formula T (f) = f ◦ h.
Prove that T is a well-defined bounded operator on this Hilbert space.

Proof:
Let u = h(x) and let J(u) denote the Jacobian of x with respect to u. Since h
and h−1 are continuously differentiable, J is bounded. Let

M = sup
u∈[0,1]2

|J(u)|.

We also note that h maps [0, 1]2 to itself. We can use a change of variables to
evaluate ‖T (f)‖2:

‖T (f)‖22 =

∫
[0,1]2

|(f ◦ h)(x)|2 dx

=

∫
[0,1]2

|J(u)| |f(u)|2 du

≤
∫
[0,1]2

M |f(u)|2 du

= M‖f‖22.

Hence
‖T (f)‖2 ≤

√
M‖f‖2;

i. e., T is well-defined and bounded. 2
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11.0.60 Problem 5

Statement: Problem 5

Let Hs(R) denote the Sobolev space of order s on the real line R, and let

‖u‖s =

(∫
R

(
1 + |ξ|2

)s |û(ξ)|2 dξ
) 1

2

denote the norm on Hs(R), where û(ξ) = 1
2π

∫
R u(x)e−ixξ dx denotes the

Fourier transform of u.

Suppose that r < s < t, all real, and ε > 0 is given. Show that there exists a
constant C > 0 such that

‖u‖s ≤ ε‖u‖t + C‖u‖r ∀u ∈ Ht(R).

Proof:
Let

g(ξ) =
(
1 + |ξ|2

) 1
2 .

We note that g is strictly positive.
Suppose that u ∈ Ht(R) and define a measure ν on R by

dν = |û(ξ)|2 dξ.

We note that

‖gr‖L2(R,ν) =

(∫
R

(
1 + |ξ|2

)s |û(ξ)|2 dξ
) 1

2

= ‖u‖r.

Similarly, ‖gs‖L2(R,ν) = ‖u‖s and ‖gt‖L2(R,ν) = ‖u‖t.
Let

C = ε
s−r
s−t .

We note that C does not depend on the choice of u.
Suppose that g(ξ) = y. If y ≥ ε

1
s−t , then

ys = ys−tyt

≤ εyt

≤ εyt + Cyr.

Otherwise, y < ε
1
s−t , and

ys = ys−ryr

< Cyr

≤ εyt + Cyr.

It follows that
g(ξ)s ≤ εg(ξ)t + Cg(ξ)r ∀ξ ∈ R.
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Using Minkowski’s inequality,

‖gs‖L2(R,ν) ≤ ‖εgt + Cgr‖L2(R,ν)

≤ ε‖gt‖L2(R,ν) + C‖gr‖L2(R,ν)

‖u‖s ≤ ε‖u‖t + C‖u‖r.

This is exactly what we wanted to show. 2
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11.0.61 Problem 6

Statement: Problem 6

Let f : [0, 1] → R. Show that f is continuous if and only if the graph of f is
compact in R2.

Proof:
Denote by G the graph of f in R2. Suppose that f is continuous. Since [0, 1] is
compact, f must be bounded. Hence G is bounded.

Now suppose that (xn, yn) ∈ G and (xn, yn) → (x, y). Then xn → x and
yn → y. However, because f is continuous, yn = f(xn)→ f(x). It follows that
y = f(x) and that (x, y) ∈ G. Since this holds for all convergent sequences
(xn, yn), G is closed.

By the Heine-Borel theorem, G is compact.
Conversely, suppose that G is compact. By the Heine-Borel theorem, G

is closed and bounded. Suppose that xn → x and that f(xn) = yn. Let
y = lim inf yn and y′ = lim sup yn. Since G is bounded,
−∞ < y < y′ < ∞. Choose subsequences ynk and yn′k such that ynk → y and
yn′k → y′.

Then (xnk , ynk) → (x, y) and (xn′k , yn′k) → (x, y′). Since G is closed,
(x, y), (x, y′) ∈ G, and it follows that y = y′. We conclude that f(xn) →
y = f(x).

Because this holds for all convergent sequences (xn), f is continuous.
Therefore, f is continuous if and only if G is compact. 2
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