Three Excursions around Conic Duality

Will Wright

Dept of Mathematics, UC Davis
https://www.math.ucdavis.edu/~willwright willwright@math.ucdavis.edu

April 28, 2017

SDP_subspace_test (2000, 5, 'sedumi')

$$
\begin{aligned}
& \begin{array}{cc}
\min _{X} & \langle C, X\rangle \\
\text { (SDP-P) } & \\
\text { s.t. } & A(X)=b \\
& x \in \mathbb{S}_{+}^{n}
\end{array} \\
&\langle C, X\rangle=\operatorname{tr}\left(C^{\top} X\right) \quad A(X):=\left[\begin{array}{c}
\left\langle A_{i}, X\right\rangle \\
\vdots \\
\left\langle A_{m}, X\right\rangle
\end{array}\right]
\end{aligned}
$$

\mathbb{S}_{+}^{n} : positive semidefinite matrices
$A_{i} \in \mathbb{S}_{+}^{2000}$ for $i=1, \ldots 5$
$C \in \mathbb{S}_{+}^{2000}$
All dense

Conic duality

Recall the primal and dual linear programs

$$
\begin{array}{lllll}
& \min _{x} & c^{T} x & & \max _{y, z} b^{T} y \\
\text { (LP-P) } & \text { s.t. } & A x=b & \text { (LP-D) } & \text { s.t. } \\
& & c \geq 0 & & A^{T} y=z \\
& x \geq 0
\end{array}
$$

Question: How can we generalize the inequality $x \geq 0$ and preserve

- symmetry ($x \geq 0$ and $z \geq 0$)?
- barrier properties (interior point tools)?

Intro to conic duality

Definition

A set $\mathcal{K} \subseteq \mathbb{R}^{n}$ is a cone if for all $x \in \mathcal{K}$ and $\alpha \geq 0$, we have $\alpha x \in \mathcal{K}$.

Definition

A cone \mathcal{K} is proper if it is closed, pointed $(\mathcal{K} \cap-\mathcal{K}=\{0\})$, and nonempty $\left(\mathcal{K}+(-\mathcal{K})=\mathbb{R}^{n}\right)$.

Examples

1) $\mathcal{K}=\mathbb{R}_{+}=\left\{x \in \mathbb{R}^{n} \mid x \geq 0\right\}$
2) $\mathcal{K}=\mathcal{K}_{2}=\left\{x=\left(x_{0}, \bar{x}\right) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid\|\bar{x}\| \leq x_{0}, x_{0} \geq 0\right\}$ (draw!)

AKA the Lorentz cone, or "ice cream cone"
3) $\mathcal{K}=\mathbb{S}_{+}^{n}=\left\{X \in \mathbb{R}^{n \times n} \mid X \succeq 0\right\}$

Intro to conic duality

Definition

Given a cone $\mathcal{K} \subset \mathbb{R}^{n}$, the dual cone of \mathcal{K} is the set

$$
\mathcal{K}^{*}=\left\{y \mid x^{\top} y \geq 0 \text { for all } x \in \mathcal{K}\right\}
$$

Examples

1) $\mathcal{K}=\mathbb{R}_{+} \Longrightarrow \mathcal{K}^{*}=\mathcal{K}$
2) $\mathcal{K}=\mathcal{K}_{2} \Longrightarrow \mathcal{K}^{*}=\mathcal{K}$
3) $\mathcal{K}=\mathbb{S}_{+}^{n} \Longrightarrow \mathcal{K}^{*}=\mathcal{K}$

Self-dual cones: primal-dual symmetry, great for optimization methods. Theorem: Every real, self-dual cone is a Cartesian product of $\mathbb{R}_{+}, \mathcal{K}_{2}$, and \mathbb{S}_{+}^{n}.

Conic primal and dual

Let \mathcal{K} be a cone in $\mathbb{R}^{n}, A(\cdot)$ a linear operator, and $\langle\cdot, \cdot\rangle$ an inner product.

$$
\begin{aligned}
& \min _{x}\langle c, x\rangle \\
& \max _{y, z} b^{T} y \\
& \text { (CP-P) s.t. } \quad A(x)=b \\
& x \in \mathcal{K} \\
& \text { (CP-D) s.t. } \quad c-A^{*}(y)=z \\
& z \in \mathcal{K}^{*}
\end{aligned}
$$

Conic duality includes:

- (LP) linear programming
- (SOCP) second-order cone programming
- (SDP) semidefinite programming

Second-order cone and semidefinite programming

$(L P) \subset(S O C P) \subset(S D P) \subset(C P) \subset$ convex optimization

Talk Outline

1. Introduction
2. Linear programming and conic duality

- Lagrangian, finding duals
- Conic duality theorem

3. Second-order cone programming

- Jordan algebra, KKT conditions
- Barrier method, interior point
- ADMM, 1st order projection method

4. Semidefinite programming

- KKT conditions
- New(-ish) subspace method

Recall the (LP) primal and dual

Duality

$$
\begin{aligned}
& \min _{x} c^{\top} x \quad \min _{x}\langle c, x\rangle \\
& \text { (LP-P) s.t. } \quad A x=b \quad \text { (CP-P) s.t. } \quad A(x)=b \\
& x \geq 0 \\
& x \in \mathcal{K}
\end{aligned}
$$

Questions:

- How to find the dual of (dualize) (LP), (CP)? (A: Lagrangian.)
- How do primal and dual feasibility/solvability inform each other?
- Can primal-dual be solved simultaneously? (A: Yes.)
- Why? How? (A: Cone symmetry.)
- Is this advantageous? (A: Yes!)

The Lagrangian

$$
\begin{array}{lll}
& \min _{x} & c^{T} x \\
(\mathrm{LP}-\mathrm{P}) & \text { s.t. } & A x=b \\
& & x \geq 0
\end{array}
$$

Definition

Given the primal linear program (LP-P), the Lagrangian is

$$
L(x, y, z)=c^{\top} x-y^{\top}(A x-b)-x^{\top} z
$$

where y is the multiplier (dual variable) for $A x=b$, and z is the multiplier for x.

- Frame primal and dual problems.
- Prove duality results, develop algorithms.
- Show necessary and sufficient conditions for solutions (KKT systems).

(LP) duality via the Lagrangian

$$
L(x, y, z)=c^{\top} x-y^{\top}(A x-b)-x^{\top} z
$$

Claim: $(\mathrm{LP}-\mathrm{P})=\min _{x} \max _{y, z} L(x, y, z)$ and $(\mathrm{LP}-\mathrm{D})=\max _{y, z} \min _{x \geq 0} L(x, y, z)$
Define dual function $g(x)=\max _{y, z} L(x, y, z)$

$$
\begin{aligned}
A x \neq b & \Longrightarrow g(x)=+\infty \\
& \Longrightarrow A x=b \\
& \Longrightarrow \min _{x} g(x)=\min _{A x=b} \max _{z \geq 0} c^{T} x-x^{\top} z
\end{aligned}
$$

(LP) duality via the Lagrangian

$$
L(x, y, z)=c^{\top} x-y^{\top}(A x-b)-x^{\top} z
$$

Claim: (LP-P) $=\min _{x} \max _{y, z} L(x, y, z)$ and (LP-D) $=\max _{y, z} \min _{x \geq 0} L(x, y, z)$
Define dual function $g(x)=\max _{y, z} L(x, y, z)$

$$
\begin{aligned}
\text { Any } x_{i}<0 & \Longrightarrow g(x)=+\infty \\
& \Longrightarrow x \geq 0 \\
\text { Any } x_{i} z_{i}>0 & \Longrightarrow \text { inner max not attained } \\
& \Longrightarrow \min _{\substack{x \geq 0 \\
A x=b}} \max _{z} c^{T} x-x^{T} z=\min _{\substack{x \geq 0 \\
A x=b}} c^{T} x
\end{aligned}
$$

Same idea gives (LP-D) $=\max _{y, z} \min _{x \geq 0} L(x, y, z)$

Interpretation of Lagrange multipliers

$$
\begin{gathered}
L(x, y, z)=c^{\top} x-y^{\top}(A x-b)-x^{\top} z \\
\text { (LP-P) } \min _{x} \max _{\substack{y, z \\
z \geq 0}} L(x, y, z)
\end{gathered}
$$

- Inner $\max _{y_{i}}-y_{i}\left(a_{i}^{T} x-b_{i}\right)$: "soft" penalty on $a_{i}^{T} x-b_{i} \neq 0$.
- Pointwise infimum implies dual problem is concave even if primal is not convex.

Theorem (LP Duality)

Let \mathbb{R}_{+}^{n} be the nonnegative orthant in \mathbb{R}^{n} with the primal-dual pair

$$
\begin{aligned}
& \min c^{T} x \\
& \text { (LP-P) s.t. } A x=b \\
& x \in \mathbb{R}_{+}^{n} \\
& \max _{y, z} b^{T} y \\
& \text { (LP-D) s.t. } \quad c-A^{T} y=z \\
& z \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

1) (duality symmetry): The dual to ($L P-D$) is ($L P-P$).
2) (weak duality): If x is primal feasible and (y, z) are dual feasible, then $b^{T} y \leq c^{T} x$.

Theorem (LP Duality)

Let \mathbb{R}_{+}^{n} be the nonnegative orthant in \mathbb{R}^{n} with the primal-dual pair
$\min _{x} c^{T} x$ $\max _{y, z} b^{T} y$
(LP-P) s.t. $A x=b$
(LP-D) s.t. $\quad c-A^{T} y=z$

$$
x \in \mathbb{R}_{+}^{n}
$$

$$
z \in \mathbb{R}_{+}^{n}
$$

3) The following are equivalent:
i) $(L P-P)$ is feasible and bounded below.
ii) $(L P-D)$ is feasible and bounded above.
iii) $(L P-P)$ is solvable.
iv) $(L P-D)$ is solvable.
v) Both (LP-P) and (LP-D) are feasible.

Key: 2) and 3) give optimality conditions.
$A x=b, c-A^{T} y=z, x, z \in \mathbb{R}_{+}^{n}$ and $x^{\top} z=0$

$$
\Longrightarrow(x, y, z)=\left(x^{*}, y^{*}, z^{*}\right)
$$

KKT conditions for LPs

Definition

The following are the Karush-Kuhn-Tucker (KKT) optimality conditions for (LP)

$$
\begin{aligned}
A x & =b & & \text { primal feasability } \\
x & \geq 0 & & \text { primal feasability } \\
c-A^{T} y & =z & & \text { dual feasability } \\
z & \geq 0 & & \text { dual feasability } \\
x^{\top} z & =0 & & \text { complementarity }
\end{aligned}
$$

- linear (easy) constraints: $A x=b, c-A^{T}=z$
- nonlinear (hard) constraints: $x, z \geq 0, x^{\top} z=0$

Coordinate-wise handling of $x, z \geq 0$: Simplex method. Interior point: Smooth nonlinear constraints with twice-diff'able penalty.

KKT conditions for LPs

Definition

The following are the Karush-Kuhn-Tucker (KKT) optimality conditions for (LP)

$$
\begin{aligned}
A x & =b & & \text { primal feasability } \\
x & \geq 0 & & \text { primal feasability } \\
c-A^{T} y & =z & & \text { dual feasability } \\
z & \geq 0 & & \text { dual feasability } \\
x^{T} z & =0 & & \text { complementarity }
\end{aligned}
$$

- linear (easy) constraints: $A x=b, c-A^{T}=z$
- nonlinear (hard) constraints: $x, z \geq 0, x^{\top} z=0$

Question: What other classes of primal-dual pairs offer symmetric duality, nice optimality (KKT) conditions, etc.?

General conic duality

Let \mathcal{K} be a cone in \mathbb{R}^{n} with the primal-dual pair
$\min _{x}\langle c, x\rangle$
$\max _{y, z} b^{\top} y$
(CP-P) s.t. $\quad A(x)=b$
(CP-D) s.t.
$c-A^{*}(y)=z$
$x \in \mathcal{K}$
$z \in \mathcal{K}^{*}$

Then we have the Lagrangian

$$
L(x, y, z)=\langle c, x\rangle-y^{\top}(A(x)-b)-\langle x, z\rangle
$$

Recall $\mathcal{K}^{*}=\left\{y \mid x^{\top} y \geq 0\right.$ for all $\left.x \in \mathcal{K}\right\}$
(CP-P) $\min _{x} \max _{\substack{y, z \\ z \in K^{*}}} L(x, y, z) \quad$ (CP-D) $\max _{y, z} \min _{x \in \mathcal{K}} L(x, y, z)$

Theorem (Conic Duality)

Let \mathcal{K} be a cone in \mathbb{R}^{n} with the primal-dual pair
$\min _{x}\langle c, x\rangle$
$\max _{y, z} b^{\top} y$
(CP-P) s.t. $\quad A(x)=b$
(CP-D) s.t.
$c-A^{*}(y)=z$
$x \in \mathcal{K}$
$z \in \mathcal{K}^{*}$

1) (duality symmetry): (CP-D) is conic, and the dual to (CP-D) is (CP-P).
2) (weak duality): If x is primal feasible and (y, z) are dual feasible, then $b^{T} y \leq\langle c, x\rangle$.

Theorem (Conic Duality)

Let \mathcal{K} be a cone in \mathbb{R}^{n} with the primal-dual pair
$\min _{x}\langle c, x\rangle$
(CP-P) s.t. $\quad A(x)=b$
$x \in \mathcal{K}$
(CP-D)
$\max _{y, z} b^{T} y$
$c-A^{*}(y)=z$
$z \in \mathcal{K}^{*}$
3) (strong duality with Slater condition): If (CP-P) is bounded below and strictly feasible ($\exists x$ with $A(x)=b$ and $x \in \operatorname{int}(\mathcal{K}))$ then (CP-D) is solvable with zero duality gap (and vice versa).
4) If (CP-P) is bounded below and strictly feasible, then x is (CP-P) optimal and (y, z) are (CP-D) optimal if and only if both hold
a) (zero duality gap): $b^{\top} y=\langle c, x\rangle$, and
b) (comlementary slackness): $\langle x, z\rangle=0$.

Symmetric cone duals

$$
\left.\begin{array}{lllll}
\min _{x} & \langle c, x\rangle \\
\text { (CP-P) } & \text { s.t. } & A(x)=b & \max _{y, z} & b^{T} y \\
& & x \in \mathcal{K} & \text { (CP-D) } & \text { s.t. }
\end{array}\right) c-A^{*}(y)=z, ~ z \in \mathcal{K}^{*} .
$$

Goals:

- Apply conic duality results to symmetric cones: $\mathcal{K}=\mathcal{K}_{2}, \mathcal{K}=\mathcal{S}_{+}^{n}$?
- Utilize cone symmetry ($\mathcal{K}^{*}=\mathcal{K}$) in solver methods.

The second-order cone program (SOCP)

Recall $\mathcal{K}_{2}=\left\{x=\left(x_{0}, \bar{x}\right) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid\|\bar{x}\| \leq x_{0}, x_{0} \geq 0\right\}$
$x \in \mathcal{K}_{2}$ handles general quadratic constraints:
Examples

1) $\left\|A_{i} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i} \Longleftrightarrow\binom{A_{i}}{c_{i}^{T}} x+\binom{b_{i}}{d_{i}} \in \mathcal{K}_{2}$
2) $x^{\top} Q_{i} x+b_{i}^{\top} x+c_{i} \leq 0 \Longleftrightarrow$

$$
\left\|\underset{\sqrt{Q_{i} x}}{\left(1+b_{i}^{T} x+c_{i}\right) / 2}\right\| \leq\left(1-b_{i}^{T} x-c_{i}\right) / 2
$$

Application

- filter design
- antenna array weight design
- truss design
- robust estimation
- model predictive control

KKT conditions for SOCPs

$$
\begin{aligned}
A x & =b & & \text { primal feasability } \\
x & \in \mathcal{K}_{2} & & \text { primal feasability } \\
c-A^{T} y & =z & & \text { dual feasability } \\
z & \in \mathcal{K}_{2} & & \text { dual feasability } \\
x^{T} z & =0 & & \text { complementarity }
\end{aligned}
$$

Question: How to handle nonsmooth $x, z \in \mathcal{K}_{2}, x^{\top} z=0$ Answers:

- Jordan algebra with smooth product $x \circ z$
\rightarrow Barrier/penalty problem and interior point method
- Projection equivalence:
$x, z \in \mathcal{K}_{2}$ and $x^{\top} z=0 \Longleftrightarrow \Pi_{\mathcal{K}}(x-z)=x$
$\rightarrow 1^{\text {st }}$-order problem and ADMM/projection method

Jordan algebra of the second-order cone

Definition
Given $x=\left(x_{0}, \bar{x}\right), z=\left(z_{0}, \bar{z}\right) \in \mathbb{R} \times \mathbb{R}^{n-1}$, the Jordan product is

$$
x \circ z=\binom{x^{\top} z}{x_{0} \bar{z}+z_{0} \bar{x}}=\operatorname{Arw}(x) z, \quad \text { with } \operatorname{Arw}(x):=\left[\begin{array}{cc}
x_{0} & \bar{x}^{\top} \\
\bar{x} & x_{0} l
\end{array}\right]
$$

Basic Properties:

- (product identity): $e=(1,0), x \circ e=\left(x_{0}, \bar{x}\right)$
- (commutative): $x \circ z=z \circ x$
- (bilinear): linear in x for fixed z and vice versa
- (non-associative): $x \circ(y \circ z) \neq(x \circ y) \circ z$ in general
- (Jordan associative): $x^{2} \circ(z \circ x)=\left(x^{2} \circ z\right) \circ x$

SOC spectral decomposition

$$
x \circ z=\binom{x^{\top} z}{x_{0} \bar{z}+z_{0} \bar{x}}=\operatorname{Arw}(x) z \quad \operatorname{Arw}(x):=\left[\begin{array}{cc}
x_{0} & \bar{x}^{T} \\
\bar{x} & x_{0} \prime
\end{array}\right]
$$

Jordan product o induces spectral decomposition of $\mathcal{K}_{2}\left(\right.$ like $\left.\mathbb{S}_{+}^{n}\right)$

$$
\lambda_{1,2}=x_{0} \mp\|\bar{x}\|, \quad v_{1,2}=\frac{1}{2}\binom{1}{\mp \bar{v}} \text { s.t. } \begin{cases}\bar{v}=\bar{x} /\|\bar{x}\| & \bar{x} \neq 0 \\ \bar{v} \text { any unit vector } & \bar{x}=0\end{cases}
$$

Properties: For all $x \in \mathcal{K}_{2}$,

- $x=\lambda_{1} v_{1}+\lambda_{2} v_{2}$, with $\lambda_{i} \geq 0$ and $v_{1}^{\top} v_{2}=0$, (hence notation $x \succeq \mathcal{K}_{2} 0$)
- $x \in \operatorname{int}\left(\mathcal{K}_{2}\right) \Longleftrightarrow \lambda_{i}>0$, (leads to barrier notion)
- $\operatorname{tr}(x)=\lambda_{1}+\lambda_{2}, \operatorname{det}(x)=\lambda_{1} \lambda_{2}=x_{0}^{2}-\|\bar{x}\|^{2}$
- $x^{-1}:=\lambda_{1}^{-1} v_{1}+\lambda_{2}^{-1} v_{2},\left(x^{-1} \circ x=e\right)$
- $x^{1 / 2}:=\lambda_{1}^{1 / 2} v_{1}+\lambda_{2}^{1 / 2} v_{2},\left(x^{1 / 2} \circ x^{1 / 2}=x\right)$

Jordan product and complementarity condition

Goal: Handle $x, z \in \mathcal{K}_{2}$ and $x^{\top} z=0$ "smoothly".

The following are equivalent:
i) $x, z \in \mathcal{K}_{2}$ and $x^{\top} z=0$
ii) $x, z \in \mathcal{K}_{2}$ and $x \circ z=0$
(Proof by picture!)
Great news: Swapping $x^{\top} z=0$ for $x \circ z=0$ gives

1. twice-differentiable term $x \circ z$ (for $x, z \in \operatorname{int}\left(\mathcal{K}_{2}\right)$)
2. n constraints, square Newton system

Log barrier: $\phi_{\mathcal{K}}(x):=-\sum_{i=1}^{d} \log \lambda_{i}, \operatorname{dom}\left(\phi_{\mathcal{K}}\right)=\operatorname{int}(\mathcal{K})$
Plot of log barrier for rho $=1,0.5,0.05$

SOC log barrier

Log barrier: $\phi_{\mathcal{K}}(x):=-\sum_{i=1}^{d} \log \lambda_{i}=-\log \left(x_{0}^{2}-\|\bar{x}\|^{2}\right)$
$\nabla \phi_{\mathcal{K}}(x)=-x^{-1}=-\left(\lambda_{1}^{-1} v_{1}+\lambda_{2}^{-1} v_{2}\right)$
$\nabla^{2} \phi_{\mathcal{K}}(x)=Q(x)^{-1}=Q\left(x^{-1}\right)$
$\left(Q(x):=2 \operatorname{Arw}^{2}(x)-\operatorname{Arw}\left(x^{2}\right)=\left(2 x x^{\top}-\left(x^{\top} J x\right) J\right)\right)$
Note, (x, z) complementary if and only if one of the following holds:

- $x=0, z \in \operatorname{int}\left(\mathcal{K}_{2}\right)$
- $z=0, x \in \operatorname{int}\left(\mathcal{K}_{2}\right)$
- $x, z \in \partial\left(\mathcal{K}_{2}\right)$

Thus $\phi_{\mathcal{K}}(x)$ or $\phi_{\mathcal{K}}(z) \rightarrow \infty$, as $(x, z) \rightarrow\left(x^{*}, z^{*}\right)$

SOC central path

$$
\begin{array}{ll}
\min _{x} & c^{\top} x+\rho \phi(x) \\
\text { s.t. } & A x=b \\
& x \in \mathcal{K}_{2}
\end{array}
$$

$(\mathrm{SOCP}-\mathrm{P})_{\rho}$ s.t. $\quad A x=b$
(central path): $\{(x(\rho), y(\rho), z(\rho) \mid \rho>0)\}$

SOC central path

$$
\begin{array}{lll}
& \min _{x} & c^{\top} x+\rho \phi(x) \\
(\mathrm{SOCP}-\mathrm{P})_{\rho} & \text { s.t. } & A x=b \\
& & x \in \mathcal{K}_{2}
\end{array}
$$

Question: How to build a nice Newton system?
Ans: Penalize dual z instead.

Barrier KKT conditions and Newton system

$$
\begin{gathered}
L_{\rho}(x, y, z)=c^{T} x-y^{\top}(A x-b)-x^{T} z-\rho \phi(z) \\
\nabla_{z} L_{\rho}=-x+\rho z^{-1}=0 \Longleftrightarrow x \circ z=\rho e \\
(\operatorname{SOCP-KKT})_{\rho}\left[\begin{array}{c}
c-A^{T} y-z \\
A x-b \\
\operatorname{Arw}(x) z-\rho e
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
w^{+}=\left(x^{+}, y^{+}, z^{+}\right)=(x+\Delta x, y+\Delta y, z+\Delta z), M=\nabla^{2} L_{\rho}(w) \\
M \Delta w=\left[\begin{array}{ccc}
0 & A^{T} & 1 \\
A & 0 & 0 \\
\operatorname{Arw}(z) & 0 & \operatorname{Arw}(x)
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right]=\left[\begin{array}{c}
c-A^{T} y-z \\
b-A x \\
\rho e-\operatorname{Arw}(x) z
\end{array}\right]=\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]
\end{gathered}
$$

Barrier KKT conditions and Newton system

$$
\left[\begin{array}{ccc}
0 & A^{T} & I \\
A & 0 & 0 \\
\operatorname{Arw}(z) & 0 & \operatorname{Arw}(x)
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right]=\left[\begin{array}{c}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]
$$

- (iteration): Generally just take one Newton step per ρ
- (factorize and pivot): $\operatorname{Arw}(x)$ sparse
- (conditioning): $\operatorname{cond}(M) \sim \operatorname{cond}(\operatorname{Arw}(x))$
- (convergence): Residuals $\approx \mathcal{O}\left(\sqrt{\epsilon_{\text {mach }}}\right)=10^{-8}$

Question: How to handle large problems? ($n \gg 1,000$)

ADMM: alternating direction method of multipliers

$$
\begin{array}{ll}
\min & f(x)+g(z) \\
\text { s.t. } & A x+B z=c
\end{array}
$$

Question: How to apply to KKT conditions on SOCP?

$$
\begin{aligned}
A x & =b & & \text { primal feasability } \\
x & \in \mathcal{K}_{2} & & \text { primal feasability } \\
c-A^{T} y & =z & & \text { dual feasability } \\
z & \in \mathcal{K}_{2} & & \text { dual feasability } \\
x^{T} z & =0 & & \text { complementarity }
\end{aligned}
$$

(hint): $x, z \in \mathcal{K}_{2}$ and $x^{\top} z=0 \Longleftrightarrow \Pi_{\mathcal{K}}(x-z)=x$

ADMM applied to SOCP

Homogeneous embedding of SOCP (self-dual form), $Q u=v$

$$
v:=\left[\begin{array}{l}
z \\
0 \\
\kappa
\end{array}\right]=\left[\begin{array}{ccc}
0 & A^{T} & c \\
-A & 0 & b \\
-c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\tau
\end{array}\right]=: Q u
$$

- (original variables): $(\hat{x}, \hat{y}, \hat{z})=(x / \tau, y / \tau, z / \tau)$
- $(\tau, \kappa)=(1,0)$ recovers standard primal-dual
- (τ, κ) act as primal-dual feasibility certificates $\mathcal{C}:=\mathcal{K} \times \mathbb{R}^{n} \times \mathbb{R}_{+}, \quad \mathcal{C}^{*}=\mathcal{K} \times\{0\}^{n} \times \mathbb{R}_{+}$ (indicator): $\delta_{S}(x):=\left\{\begin{array}{cc}0 & \text { if } x \in S \\ +\infty & \text { else }\end{array}\right.$ $\min \delta_{\mathcal{C} \times \mathcal{C}^{*}}(u, v)+\delta_{Q \tilde{u}=\tilde{v}}(\tilde{u}, \tilde{v})$
s.t. $\quad(u, v)=(\tilde{u}, \tilde{v})$

ADMM applied to SOCP

$$
\begin{array}{ll}
\min & \delta_{\mathcal{C} \times \mathcal{C}^{*}}(u, v)+\delta_{Q \tilde{u}=\tilde{v}}(\tilde{u}, \tilde{v}) \\
\text { s.t. } & (u, v)=(\tilde{u}, \tilde{v})
\end{array}
$$

(λ, μ) : dual multipliers from ADMM

$$
\begin{array}{ll}
\left(\tilde{u}^{+}, \tilde{v}^{+}\right)= & \Pi_{Q u=v}(u+\lambda, v+\mu) \\
u^{+}= & \Pi_{C}\left(\tilde{u}^{+}-\lambda\right) \\
v^{+}= & \Pi_{C}^{*}\left(\tilde{v}^{+}-\mu\right) \\
\lambda^{+}= & \lambda-\tilde{u}^{+}+u^{+} \\
\mu^{+}= & \mu-\tilde{v}^{+}+v^{+}
\end{array}
$$

- (implementation): Extremely easy, $\mathcal{O}(100)$ lines of code
- (main cost): Single initial factorization of $M=\left[\begin{array}{cc}I & A^{T} \\ -A & I\end{array}\right]$
- (iterations): Very cheap, one backsolve and one projection

State Primal and Dual SDP

$\min _{x}\langle C, x\rangle$
(SDP-P) s.t. $\quad A(X)=b$
$x \in \mathbb{S}_{+}^{n}$

$\max _{y, z} b^{T} y$
(SDP-D) s.t. $\quad C-A^{*}(y)=Z$
$Z \in \mathbb{S}_{+}^{n}$

$$
\langle C, X\rangle=\operatorname{tr}\left(C^{\top} X\right) \quad A(X):=\left[\begin{array}{c}
\left\langle A_{i}, X\right\rangle \\
\vdots \\
\left\langle A_{m}, X\right\rangle
\end{array}\right] \quad A^{*}(y):=\sum_{i=1}^{m} y_{i} A_{i}
$$

SDP Applications

- matrix recovery
- eigenvalue optimization
- anything with a linear matrix inequality $\left(A_{0}+\sum_{i=1}^{m} y_{i} A_{i} \succeq 0\right)$

SDP KKT conditions

$$
\begin{aligned}
A(X) & =b \\
X & \in \mathbb{S}_{+}^{n} \\
c-A^{*}(y) & =Z \\
Z & \in \mathbb{S}_{+}^{n} \\
\operatorname{tr}\left(X^{\top} Z\right) & =0
\end{aligned}
$$

primal feasability primal feasability dual feasability dual feasability complementarity
(barrier): $X Z=\rho l$, (like SOCP $x \circ z=\rho e$)

$$
(\mathrm{SDP}-\mathrm{KKT})_{\rho}\left[\begin{array}{c}
C-A^{*}(y)-Z \\
A(X)-b \\
X Z-\rho l
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- (factorize/pivot?): Unlike $\operatorname{Arw}(x), \operatorname{rank}(X)$ unknown
- (question): How to solve large (SDP) with (possibly) low-rank X^{*} ?

SDP subspace method [WW]

Goal: Find "optimal" k-dimensional subspace \mathcal{V}

- $\mathcal{V}_{k}^{*}:=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}, k$ largest eigenvalues of X^{*}
- Optimize over smallest space possible

Key observation:

- $X^{*}, Z^{*} \succeq 0,\langle X, Z\rangle=0$

$$
\Longrightarrow \operatorname{ran}(X) \perp \operatorname{ran}(Z)=\operatorname{ran}\left(C-A^{*}(y)\right)
$$

Iteration-wise goals:

- Want $\mathcal{V}_{k} \rightarrow \mathcal{V}_{k}^{*}$
- \mathcal{V}^{+}: find $\lambda\left(C-A^{*}(y)\right) \ll 0$ and toss $\lambda\left(C-A^{*}(y)\right)>0$
- y^{+}: cheap update (i.e., smallest subspace SDP solve)

SDP subspace method [WW]

Algorithm

1. Initialize: dual variable y_{0}, \mathcal{V} subspace of \mathbb{R}^{n}
2. For iter = 1 : iter_max

- Set $V^{+}=$minimal/nonpositive eigenvectors of $\left(C-A^{*}(y)\right)$
- Toss any $v_{i} \in V$ with $v_{i}^{\top}\left(C-A^{*}(y)\right) v_{i} \gg 0$
- Set $V=\operatorname{orth}\left[V, V^{+}\right]$
- Build subspace problem: $A_{i}^{\mathcal{V}}=V^{\top} A_{i} V, C^{\mathcal{V}}=V^{\top} C V$
- Solve tiny SDP: $[X, y]=\operatorname{SDP}$ solver $\left(A^{\mathcal{V}}, b, C^{\mathcal{V}}\right)$
- Test for convergence

SDP subspace method [WW]

SDP_subspace_test (2000, 5, 'subspace')
Current method:

- Not tossing bad v_{i} 's
- Not using subspace method for $y \in \mathbb{R}^{m}$
- Using fixed dimesion update for \mathcal{V}^{+}

Only known reference (I could find): Olivera, 2002

- Only rank 1 updates
- no theoretical results
- no X basis finesse

SDPs

Thank you!!

