Introductio

LPs and Conic Duality

 SOCPs
 SDP

 000
 000

 00000000
 000

 000
 000

Three Excursions around Conic Duality

Will Wright

Dept of Mathematics, UC Davis

https://www.math.ucdavis.edu/~willwright willwright@math.ucdavis.edu

April 28, 2017

Introduction	LPs and Conic Duality	SOCPs	SDPs
• 000 00 0	00 00000000 0000	000 00000000 000	000 0000
Intro to Conio Duality			

SDP_subspace_test(2000, 5, 'sedumi')

$$(\text{SDP-P}) \quad \begin{array}{l} \min_{X} & \langle C, X \rangle \\ (\text{SDP-P}) & \text{s.t.} \quad A(X) = b \\ & x \in \mathbb{S}^{n}_{+} \end{array}$$
$$\langle C, X \rangle = \operatorname{tr}(C^{\mathsf{T}}X) \quad A(X) := \begin{bmatrix} \langle A_{i}, X \rangle \\ \vdots \\ \langle A_{m}, X \rangle \end{bmatrix}$$
$$\mathbb{S}^{n}_{+} : \text{ positive semidefinite matrices}$$

Usitive semillemitte matrices

 $egin{aligned} & \textit{A}_i \in \mathbb{S}^{2000}_+ \ \textit{for} \ i=1,\ldots 5 \ & \textit{C} \in \mathbb{S}^{2000}_+ \end{aligned}$ All dense

Introduction	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000
Intro to Conic Duality			

Conic duality

Recall the primal and dual linear programs

$$\begin{array}{cccc} \min_{x} & c^{T}x & \max_{y,z} & b^{T}y \\ (\text{LP-P}) & \text{s.t.} & Ax = b & (\text{LP-D}) & \text{s.t.} & c - A^{T}y = z \\ & x \geq 0 & z \geq 0 \end{array}$$

Question: How can we generalize the inequality $x \ge 0$ and preserve

- symmetry ($x \ge 0$ and $z \ge 0$)?
- barrier properties (interior point tools)?

Introduction	LPs and Conic Duality	SOCPs	SDPs
00●0 00 0	00 00000000 0000	000 00000000 000	000 0000
Internet Consis Durality			

Intro to conic duality

Definition

A set $\mathcal{K} \subseteq \mathbb{R}^n$ is a **cone** if for all $x \in \mathcal{K}$ and $\alpha \ge 0$, we have $\alpha x \in \mathcal{K}$.

Definition

A cone \mathcal{K} is **proper** if it is closed, pointed $(\mathcal{K} \cap -\mathcal{K} = \{0\})$, and nonempty $(\mathcal{K} + (-\mathcal{K}) = \mathbb{R}^n)$.

Examples

1) $\mathcal{K} = \mathbb{R}_+ = \{x \in \mathbb{R}^n \mid x \ge 0\}$ 2) $\mathcal{K} = \mathcal{K}_2 = \{x = (x_0, \bar{x}) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid ||\bar{x}|| \le x_0, x_0 \ge 0\}$ (draw!) AKA the Lorentz cone, or "ice cream cone"

3)
$$\mathcal{K} = \mathbb{S}^n_+ = \{ X \in \mathbb{R}^{n \times n} \mid X \succeq 0 \}$$

Introduction	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000	000 00000000 000	000 0000
Intro to Conic Duality			

Intro to conic duality

Definition

Given a cone $\mathcal{K} \subset \mathbb{R}^n$, the **dual cone** of \mathcal{K} is the set

$$\mathcal{K}^* = \{ y \mid x^T y \ge 0 \text{ for all } x \in \mathcal{K} \}$$

Examples

1) $\mathcal{K} = \mathbb{R}_+ \implies \mathcal{K}^* = \mathcal{K}$

2)
$$\mathcal{K} = \mathcal{K}_2 \implies \mathcal{K}^* = \mathcal{K}$$

3) $\mathcal{K} = \mathbb{S}^n_+ \implies \mathcal{K}^* = \mathcal{K}$

Self-dual cones: primal-dual symmetry, great for optimization methods. **Theorem:** Every real, self-dual cone is a Cartesian product of \mathbb{R}_+ , \mathcal{K}_2 , and \mathbb{S}_+^n .

Introduction	LPs and Conic Duality	SOCPs	SDPs
0000 ●0 0	00 00000000 0000	000 00000000 000	000
Conic Duals			

Conic primal and dual

Let \mathcal{K} be a cone in \mathbb{R}^n , $A(\cdot)$ a linear operator, and $\langle \cdot, \cdot \rangle$ an inner product.

$$\begin{array}{cccc} \min_{x} & \langle c, x \rangle & \max_{y,z} & b^{T}y \\ (\text{CP-P}) & \text{s.t.} & A(x) = b & (\text{CP-D}) & \text{s.t.} & c - A^{*}(y) = z \\ & x \in \mathcal{K} & z \in \mathcal{K}^{*} \end{array}$$

Conic duality includes:

- (LP) linear programming
- (SOCP) second-order cone programming
- (SDP) semidefinite programming

Introduction	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000
Conio Duolo			

Second-order cone and semidefinite programming

 $(LP) \subset (SOCP) \subset (SDP) \subset (CP) \subset convex optimization$

Introduction	LPs and Conic Duality	SOCPs	SDPs
0000 00 •	00 0000000 0000	000 00000000 000	000 0000
Introduction			

Talk Outline

- 1. Introduction
- 2. Linear programming and conic duality
 - Lagrangian, finding duals
 - Conic duality theorem
- 3. Second-order cone programming
 - Jordan algebra, KKT conditions
 - Barrier method, interior point
 - ADMM, 1st order projection method
- 4. Semidefinite programming
 - KKT conditions
 - New(-ish) subspace method

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	•• 00000000 0000	000 00000000 000	000 0000
Intro			

Recall the (LP) primal and dual

$$\begin{array}{cccc} \min_{x} & c^{\mathsf{T}}x & \max_{y,z} & b^{\mathsf{T}}y \\ (\mathsf{LP-P}) & \mathsf{s.t.} & \mathsf{A}x = b & (\mathsf{LP-D}) & \mathsf{s.t.} & c - \mathsf{A}^{\mathsf{T}}y = z \\ & x \geq 0 & z \geq 0 \end{array}$$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000	000 00000000 000	000 0000

Duality

Intro

$$\begin{array}{cccc} \min_{x} & c^{T}x & \min_{x} & \langle c, x \rangle \\ (\mathsf{LP-P}) & \mathrm{s.t.} & Ax = b & (\mathsf{CP-P}) & \mathrm{s.t.} & A(x) = b \\ & x \geq 0 & x \in \mathcal{K} \end{array}$$

Questions:

- ► How to find the dual of (*dualize*) (LP), (CP)? (A: Lagrangian.)
- How do primal and dual feasibility/solvability inform each other?
- Can primal-dual be solved simultaneously? (A: Yes.)
- Why? How? (A: Cone symmetry.)
- Is this advantageous? (A: Yes!)

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 • 0000000 0000	000 00000000 000	000
LP Duality			

The Lagrangian

$$\begin{array}{ll} \min_{x} & c^{T}x\\ (\text{LP-P}) & \text{s.t.} & Ax = b\\ & x \geq 0 \end{array}$$

Definition

Given the primal linear program (LP-P), the Lagrangian is

$$L(x, y, z) = c^{T}x - y^{T}(Ax - b) - x^{T}z$$

where *y* is the **multiplier** (dual variable) for Ax = b, and *z* is the **multiplier** for *x*.

- Frame primal and dual problems.
- Prove duality results, develop algorithms.
- Show necessary and sufficient conditions for solutions (KKT systems).

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0●000000 0000	000 00000000 000	000 0000

LP Duality

(LP) duality via the Lagrangian

$$L(x, y, z) = c^{T}x - y^{T}(Ax - b) - x^{T}z$$

Claim: (LP-P) = min max $L(x, y, z)$ and (LP-D) = max min $L(x, y, z)$
 $z \ge 0$
Define dual function $g(x) = \max_{\substack{y,z \\ z \ge 0}} L(x, y, z)$
 $Ax \neq b \implies g(x) = +\infty$
 $\Rightarrow Ax = b$
 $\Rightarrow \min_{x} g(x) = \min_{\substack{x \\ Ax = b}} \sum_{\substack{z \ge 0 \\ z \ge 0}} c^{T}x - x^{T}z$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00●00000 0000	000 00000000 000	000 0000

LP Duality

(LP) duality via the Lagrangian

$$L(x, y, z) = c^{T}x - y^{T}(Ax - b) - x^{T}z$$
Claim: (LP-P) = $\min_{\substack{y,z \\ z \ge 0}} \max L(x, y, z)$ and (LP-D) = $\max_{\substack{y,z \\ x \ge 0}} L(x, y, z)$
Define dual function $g(x) = \max_{\substack{y,z \\ z \ge 0}} L(x, y, z)$
Any $x_{i} < 0 \implies g(x) = +\infty$
 $\implies x \ge 0$
Any $x_{i}z_{i} > 0 \implies \text{inner max not attained}$
 $\implies \min_{\substack{x \ge 0 \\ Ax = b}} z^{T}x - x^{T}z = \min_{\substack{x \ge 0 \\ Ax = b}} c^{T}x$

Same idea gives (LP-D) = $\max_{y,z} \min_{x \ge 0} L(x, y, z)$

 Introduction
 LPs and Conic Duality
 SOCPs
 SDPs

 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0

Interpretation of Lagrange multipliers

$$L(x, y, z) = c^{T}x - y^{T}(Ax - b) - x^{T}z$$

(LP-P)
$$\min_{\substack{x \ y, z \\ z \ge 0}} \max L(x, y, z) \qquad (LP-D) \quad \max_{\substack{y, z \ x \ge 0}} L(x, y, z)$$

- ► Inner $\max_{y_i} -y_i(a_i^T x b_i)$: "soft" penalty on $a_i^T x b_i \neq 0$.
- Pointwise infimum implies dual problem is concave even if primal is **not** convex.

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000	000 00000000 000	000 0000
LP Duality			

Theorem (LP Duality)

Let \mathbb{R}^n_+ be the nonnegative orthant in \mathbb{R}^n with the primal-dual pair

$$\begin{array}{cccc} \min_{x} & c^{T}x & \max_{y,z} & b^{T}y \\ (LP-P) & s.t. & Ax = b & (LP-D) & s.t. & c - A^{T}y = z \\ & x \in \mathbb{R}^{n}_{+} & z \in \mathbb{R}^{n}_{+} \end{array}$$

- 1) (duality symmetry): The dual to (LP-D) is (LP-P).
- 2) (weak duality): If x is primal feasible and (y, z) are dual feasible, then $b^T y \le c^T x$.

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000 0000
L D Duality			

Theorem (LP Duality)

Let \mathbb{R}^n_+ be the nonnegative orthant in \mathbb{R}^n with the primal-dual pair

$$(LP-P) \begin{array}{cccc} \min_{x} & c^{T}x & \max_{y,z} & b^{T}y \\ s.t. & Ax = b & (LP-D) & s.t. & c - A^{T}y = z \\ & x \in \mathbb{R}^{n}_{+} & z \in \mathbb{R}^{n}_{+} \end{array}$$

- 3) The following are equivalent:
 - i) (LP-P) is feasible and bounded below.
 - ii) (LP-D) is feasible and bounded above.
 - iii) (LP-P) is solvable.
 - iv) (LP-D) is solvable.
 - v) Both (LP-P) and (LP-D) are feasible.

Key: 2) and 3) give optimality conditions. $Ax = b, c - A^T y = z, x, z \in \mathbb{R}^n_+ \text{ and } x^T z = 0$ $\implies (x, y, z) = (x^*, y^*, z^*)$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 000000●0 0000	000 00000000 000	000 0000
LP Duality			

KKT conditions for LPs

Definition

The following are the Karush-Kuhn-Tucker (KKT) optimality conditions for (LP)

Ax	=	b	primal feasability
X	\geq	0	primal feasability
$c - A^T y$	=	Ζ	dual feasability
Ζ	\geq	0	dual feasability
$x^T z$	=	0	complementarity

- linear (easy) constraints: $Ax = b, c A^T = z$
- nonlinear (hard) constraints: $x, z \ge 0, x^T z = 0$

Coordinate-wise handling of $x, z \ge 0$: Simplex method. Interior point: Smooth nonlinear constraints with twice-diff'able penalty.

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 ● 0000	000 00000000 000	000 0000
LP Duality			

KKT conditions for LPs

Definition

The following are the Karush-Kuhn-Tucker (KKT) optimality conditions for (LP)

Ax	=	b	primal feasability
X	\geq	0	primal feasability
$c - A^T y$	=	Ζ	dual feasability
Z	\geq	0	dual feasability
$x^T z$	=	0	complementarity

- linear (easy) constraints: $Ax = b, c A^T = z$
- nonlinear (hard) constraints: $x, z \ge 0, x^T z = 0$

Question: What other classes of primal-dual pairs offer symmetric duality, nice optimality (KKT) conditions, etc.?

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 •000	000 00000000 000	000 0000
Capia Duality			

General conic duality

Let \mathcal{K} be a cone in \mathbb{R}^n with the primal-dual pair

$$\begin{array}{cccc} \min_{x} & \langle c, x \rangle & \max_{y, z} & b^{T}y \\ (\text{CP-P}) & \text{s.t.} & A(x) = b & (\text{CP-D}) & \text{s.t.} & c - A^{*}(y) = z \\ & x \in \mathcal{K} & z \in \mathcal{K}^{*} \end{array}$$

Then we have the Lagrangian

$$L(x, y, z) = \langle c, x \rangle - y^T (A(x) - b) - \langle x, z \rangle$$

Recall $\mathcal{K}^* = \{ y \mid x^T y \ge 0 \text{ for all } x \in \mathcal{K} \}$

(CP-P)
$$\min_{\substack{x \ y,z \\ z \in \mathcal{K}^*}} \max L(x, y, z)$$
(CP-D)
$$\max_{\substack{y,z \ x \in \mathcal{K}}} \min L(x, y, z)$$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000000	000 00000000 000	000
Conic Duality			

Theorem (Conic Duality)

Let \mathcal{K} be a cone in \mathbb{R}^n with the primal-dual pair

$$\begin{array}{cccc} \min_{x} & \langle c, x \rangle & \max_{y,z} & b^{T}y \\ (CP-P) & s.t. & A(x) = b & (CP-D) & s.t. & c - A^{*}(y) = z \\ & x \in \mathcal{K} & z \in \mathcal{K}^{*} \end{array}$$

- 1) (duality symmetry): (CP-D) is conic, and the dual to (CP-D) is (CP-P).
- (weak duality): If x is primal feasible and (y, z) are dual feasible, then b^Ty ≤ ⟨c, x⟩.

0000 00 000 <th>LPs and Conic Duality</th> <th>SOCPs</th> <th>SDPs</th>	LPs and Conic Duality	SOCPs	SDPs
			000

Theorem (Conic Duality)

Conic Duality

Let \mathcal{K} be a cone in \mathbb{R}^n with the primal-dual pair

$$\begin{array}{cccc} \min_{x} & \langle c, x \rangle & \max_{y,z} & b^{T}y \\ (CP-P) & s.t. & A(x) = b & (CP-D) & s.t. & c - A^{*}(y) = z \\ & x \in \mathcal{K} & z \in \mathcal{K}^{*} \end{array}$$

- (strong duality with Slater condition): If (CP-P) is bounded below and strictly feasible (∃x with A(x) = b and x ∈ int(K)) then (CP-D) is solvable with zero duality gap (and vice versa).
- 4) If (CP-P) is bounded below and strictly feasible, then x is (CP-P) optimal and (y, z) are (CP-D) optimal if and only if both hold
 - a) (zero duality gap): $b^T y = \langle c, x \rangle$, and
 - b) (comlementary slackness): $\langle x, z \rangle = 0$.

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 000 ●	000 00000000 000	000 0000

Conic Duality

Symmetric cone duals

$$\begin{array}{cccc} \min_{x} & \langle c, x \rangle & \max_{y,z} & b^{T}y \\ (\text{CP-P}) & \text{s.t.} & A(x) = b & (\text{CP-D}) & \text{s.t.} & c - A^{*}(y) = z \\ & x \in \mathcal{K} & z \in \mathcal{K}^{*} \end{array}$$

Goals:

- Apply conic duality results to symmetric cones: $\mathcal{K} = \mathcal{K}_2, \, \mathcal{K} = \mathcal{S}_+^n$?
- Utilize cone symmetry ($\mathcal{K}^* = \mathcal{K}$) in solver methods.

Introduction	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	• 00 000000000 000	000 0000

The second-order cone program (SOCP)

$$\begin{array}{cccc} \min_{x} & c^{T}x & \max_{y,z} & b^{T}y \\ (\text{SOCP-P}) & \text{s.t.} & Ax = b & (\text{SOCP-D}) & \text{s.t.} & c - A^{T}y = z \\ & x \in \mathcal{K}_{2} & z \in \mathcal{K}_{2} \end{array}$$

Recall
$$\mathcal{K}_2 = \{x = (x_0, \bar{x}) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid ||\bar{x}|| \le x_0, x_0 \ge 0\}$$

 $x \in \mathcal{K}_2$ handles general quadratic constraints:

Examples

1)
$$||A_ix + b_i|| \leq c_i^T x + d_i \iff \begin{pmatrix} A_i \\ c_i^T \end{pmatrix} x + \begin{pmatrix} b_i \\ d_i \end{pmatrix} \in \mathcal{K}_2$$

2) $x^T Q_i x + b_i^T x + c_i \leq 0 \iff \|(1 + b_i^T x + c_i)/2\| \leq (1 - b_i^T x - c_i)/2$

Introduction 0000 00 0	LPs and Conic Duality oo ooooooooo oooo	SOCPs ⊙●O ○○○○○○○○○○ ○○○	SDPs 000 0000
- Intro to SOCD			

Application

- filter design
- antenna array weight design
- truss design
- robust estimation
- model predictive control

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000 0000
Intro to SOCP			

KKT conditions for SOCPs

$$Ax = b$$

$$x \in \mathcal{K}_{2}$$

$$c - A^{T}y = z$$

$$z \in \mathcal{K}_{2}$$

$$x^{T}z = 0$$

primal feasability primal feasability dual feasability dual feasability complementarity

Question: How to handle nonsmooth $x, z \in \mathcal{K}_2, x^T z = 0$ **Answers**:

- Solution of the second second
 - ightarrow Barrier/penalty problem and interior point method
- Projection equivalence:

 $x, z \in \mathcal{K}_2$ and $x^T z = 0 \iff \Pi_{\mathcal{K}}(x - z) = x$

 \rightarrow 1 $^{st}\text{-}order problem and ADMM/projection method$

Introduction	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 •00000000 000	000 0000
SOCPs: Jordan Algebra and	Interior Point		

Jordan algebra of the second-order cone

Definition

Given $x=(x_0,\bar{x}), z=(z_0,\bar{z})\in\mathbb{R} imes\mathbb{R}^{n-1},$ the Jordan product is

$$x \circ z = \begin{pmatrix} x^T z \\ x_0 \overline{z} + z_0 \overline{x} \end{pmatrix} = \operatorname{Arw}(x)z, \quad \text{with } \operatorname{Arw}(x) := \begin{bmatrix} x_0 & \overline{x}^T \\ \overline{x} & x_0 I \end{bmatrix}$$

Basic Properties:

- (product identity): $e = (1, 0), x \circ e = (x_0, \overline{x})$
- (commutative): $x \circ z = z \circ x$
- (bilinear): linear in x for fixed z and vice versa
- (non-associative): $x \circ (y \circ z) \neq (x \circ y) \circ z$ in general
- (Jordan associative): $x^2 \circ (z \circ x) = (x^2 \circ z) \circ x$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000	000 0 0000000 000	000 0000

SOCPs: Jordan Algebra and Interior Point

SOC spectral decomposition

$$x \circ z = \begin{pmatrix} x^T z \\ x_0 \overline{z} + z_0 \overline{x} \end{pmatrix} = \operatorname{Arw}(x)z \qquad \operatorname{Arw}(x) := \begin{bmatrix} x_0 & \overline{x}^T \\ \overline{x} & x_0 I \end{bmatrix}$$

Jordan product \circ induces spectral decomposition of \mathcal{K}_2 (like \mathbb{S}_+^n)

$$\lambda_{1,2} = x_0 \mp ||\bar{x}||, \quad v_{1,2} = \frac{1}{2} \begin{pmatrix} 1 \\ \mp \bar{\nu} \end{pmatrix} \text{s.t.} \begin{cases} \bar{\nu} = \bar{x}/||\bar{x}|| & \bar{x} \neq 0 \\ \bar{\nu} \text{ any unit vector } & \bar{x} = 0 \end{cases}$$

Properties: For all $x \in \mathcal{K}_2$,

- ► $x = \lambda_1 v_1 + \lambda_2 v_2$, with $\lambda_i \ge 0$ and $v_1^T v_2 = 0$, (hence notation $x \succeq_{\mathcal{K}_2} 0$)
- $x \in int(\mathcal{K}_2) \iff \lambda_i > 0$, (leads to barrier notion)
- $\operatorname{tr}(x) = \lambda_1 + \lambda_2, \operatorname{det}(x) = \lambda_1 \lambda_2 = x_0^2 ||\bar{x}||^2$ • $x^{-1} - \lambda_2^{-1} u_1 + \lambda_2^{-1} u_2$ $(x^{-1} \circ x - e)$

•
$$x^{1/2} := \lambda_1^{1/2} v_1 + \lambda_2^{1/2} v_2, (x^{1/2} \circ x^{1/2} = x)$$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000
SOCPs: Jordan Algebra and	I Interior Point		

Jordan product and complementarity condition

Goal: Handle $x, z \in \mathcal{K}_2$ and $x^T z = 0$ "smoothly".

The following are equivalent:

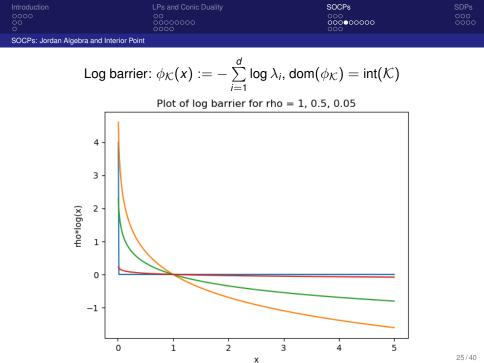
i)
$$x, z \in \mathcal{K}_2$$
 and $x^T z = 0$

ii)
$$x, z \in \mathcal{K}_2$$
 and $x \circ z = 0$

(Proof by picture!)

Great news: Swapping $x^T z = 0$ for $x \circ z = 0$ gives

- 1. twice-differentiable term $x \circ z$ (for $x, z \in int(\mathcal{K}_2)$)
- 2. *n* constraints, square Newton system



	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000 0000

SOCPs: Jordan Algebra and Interior Point

SOC log barrier

Log barrier:
$$\phi_{\mathcal{K}}(x) := -\sum_{i=1}^{d} \log \lambda_i = -\log(x_0^2 - \|\bar{x}\|^2)$$

 $\nabla \phi_{\mathcal{K}}(x) = -x^{-1} = -(\lambda_1^{-1}v_1 + \lambda_2^{-1}v_2)$
 $\nabla^2 \phi_{\mathcal{K}}(x) = Q(x)^{-1} = Q(x^{-1})$
 $(Q(x) := 2\operatorname{Arw}^2(x) - \operatorname{Arw}(x^2) = (2xx^T - (x^TJx)J))$
Note, (x, z) complementary if and only if one of the following holds:
 $\mathbf{k} = 0, z \in \operatorname{int}(\mathcal{K}_2)$
 $\mathbf{k} = 0, x \in \operatorname{int}(\mathcal{K}_2)$
 $\mathbf{k} = x, z \in \partial(\mathcal{K}_2)$

Thus $\phi_{\mathcal{K}}(x)$ or $\phi_{\mathcal{K}}(z) o \infty$, as $(x,z) o (x^*,z^*)$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 000000000 000	000 0000
SOCRe: Jordon Algobro and	Interior Point		

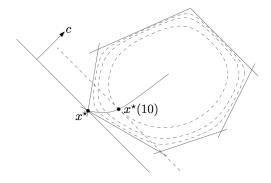
SOC central path

$$\min_{x} c^{T}x + \rho\phi(x)$$

$$(\text{SOCP-P})_{\rho} \text{ s.t. } Ax = b$$

$$x \in \mathcal{K}_{2}$$

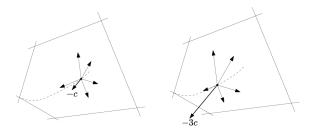
(central path): $\{(x(\rho), y(\rho), z(\rho) | \rho > 0)\}$



	LPs and Conic Duality	SOCPs	SDPs
0000	00 00000000 0000	000 000000000 000	000 0000
SOCPs: Jordan Algebra and		000	

SOC central path

$$\begin{array}{ll} \min_{x} & c^{\mathsf{T}}x + \rho\phi(x) \\ (\mathsf{SOCP-P})_{\rho} & \mathsf{s.t.} & \mathsf{A}x = b \\ & x \in \mathcal{K}_{2} \end{array}$$



Question: How to build a *nice* Newton system? Ans: Penalize dual *z* instead.

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 0000000●0 000	000 0000
SOCPs: Jordan Algebra and	Interior Point		

Barrier KKT conditions and Newton system

$$L_{\rho}(x, y, z) = c^T x - y^T (Ax - b) - x^T z - \rho \phi(z)$$

$$abla_z L_
ho = -x +
ho z^{-1} = \mathbf{0} \iff x \circ z =
ho \mathbf{e}$$

$$(\text{SOCP-KKT})_{\rho} \begin{bmatrix} c - A^{T}y - z \\ Ax - b \\ \text{Arw}(x)z - \rho e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 $w^+ = (x^+, y^+, z^+) = (x + \Delta x, y + \Delta y, z + \Delta z), M = \nabla^2 L_{\rho}(w)$

$$M\Delta w = \begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ Arw(z) & 0 & Arw(x) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} c - A^T y - z \\ b - Ax \\ \rho e - Arw(x)z \end{bmatrix} = \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix}$$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000 0000
SOCPs: Jordan Algebra and	Interior Point		

Barrier KKT conditions and Newton system

$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ Arw(z) & 0 & Arw(x) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix}$$

- (iteration): Generally just take one Newton step per ρ
- (factorize and pivot): Arw(x) sparse
- ► (conditioning): cond(M) ~ cond(Arw(x))
- (convergence): Residuals $\approx \mathcal{O}(\sqrt{\epsilon_{\text{mach}}}) = 10^{-8}$

Question: How to handle large problems? (n >> 1,000)

 Introduction
 LPs and Conic Duality
 SOCPs
 SI

 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

ADMM: alternating direction method of multipliers

min f(x) + g(z)s.t. Ax + Bz = c

Question: How to apply to KKT conditions on SOCP?

$$\begin{array}{rcl} Ax & = & b & \qquad \mbox{primal feasability} \\ x & \in & \mathcal{K}_2 & \qquad \mbox{primal feasability} \\ c - A^T y & = & z & \qquad \mbox{dual feasability} \\ z & \in & \mathcal{K}_2 & \qquad \mbox{dual feasability} \\ x^T z & = & 0 & \qquad \mbox{complementarity} \end{array}$$

(hint): $x, z \in \mathcal{K}_2$ and $x^T z = 0 \iff \Pi_{\mathcal{K}}(x - z) = x$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000	000 00000000 0●0	000 0000

ADMM applied to SOCP

Homogeneous embedding of SOCP (self-dual form), Qu = v

$$v := \begin{bmatrix} z \\ 0 \\ \kappa \end{bmatrix} = \begin{bmatrix} 0 & A^T & c \\ -A & 0 & b \\ -c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix} =: Qu$$

• (original variables): $(\hat{x}, \hat{y}, \hat{z}) = (x/\tau, y/\tau, z/\tau)$

►
$$(au, \kappa) = (1, 0)$$
 recovers standard primal-dua

• (τ,κ) act as primal-dual feasibility certificates

$$\begin{split} \mathcal{C} &:= \mathcal{K} \times \mathbb{R}^n \times \mathbb{R}_+, \ \mathcal{C}^* = \mathcal{K} \times \{0\}^n \times \mathbb{R}_+ \\ \text{(indicator): } \delta_{\mathcal{S}}(x) &:= \begin{cases} 0 & \text{if } x \in \mathcal{S} \\ +\infty & \text{else} \end{cases} \\ & \text{min } \delta_{\mathcal{C} \times \mathcal{C}^*}(u, v) + \delta_{Q\tilde{u} = \tilde{v}}(\tilde{u}, \tilde{v}) \\ & \text{s.t. } (u, v) = (\tilde{u}, \tilde{v}) \end{split}$$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000	000 00000000 00●	000 0000

ADMM applied to SOCP

$$\begin{array}{ll} \min & \delta_{\mathcal{C}\times\mathcal{C}^*}(u,v) + \delta_{Q\tilde{u}=\tilde{v}}(\tilde{u},\tilde{v}) \\ \text{s.t.} & (u,v) = (\tilde{u},\tilde{v}) \end{array}$$

 (λ, μ) : dual multipliers from ADMM

$$\begin{array}{lll} (\tilde{u}^{+},\tilde{v}^{+}) = & \Pi_{Qu=v}(u+\lambda,v+\mu) \\ u^{+} = & \Pi_{C}(\tilde{u}^{+}-\lambda) \\ v^{+} = & \Pi_{C}^{*}(\tilde{v}^{+}-\mu) \\ \lambda^{+} = & \lambda-\tilde{u}^{+}+u^{+} \\ \mu^{+} = & \mu-\tilde{v}^{+}+v^{+} \end{array}$$

- ► (implementation): Extremely easy, O(100) lines of code
- (main cost): Single initial factorization of $M = \begin{bmatrix} I & A^T \\ -A & I \end{bmatrix}$
- (iterations): Very cheap, one backsolve and one projection

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000	000 00000000 000	000
SDPs			

State Primal and Dual SDP

$$\begin{array}{cccc} \min_{X} & \langle C, X \rangle & \max_{y,Z} & b^{T}y \\ (\text{SDP-P}) & \text{s.t.} & A(X) = b & (\text{SDP-D}) & \text{s.t.} & C - A^{*}(y) = Z \\ & X \in \mathbb{S}^{n}_{+} & Z \in \mathbb{S}^{n}_{+} \end{array}$$

$$\langle C, X \rangle = \operatorname{tr}(C^{\mathsf{T}}X) \quad A(X) := \begin{bmatrix} \langle A_i, X \rangle \\ \vdots \\ \langle A_m, X \rangle \end{bmatrix} \quad A^*(y) := \sum_{i=1}^m y_i A_i$$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	0 00 0000

SDPs

SDP Applications

- matrix recovery
- eigenvalue optimization
- anything with a linear matrix inequality $(A_0 + \sum_{i=1}^m y_i A_i \succeq 0)$

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 0000000 0000	000 00000000 000	000 0000
SDPs			

SDP KKT conditions

$$egin{aligned} A(X) &= b & ext{primal feasability} \ X &\in \mathbb{S}^n_+ & ext{primal feasability} \ c - A^*(y) &= Z & ext{dual feasability} \ Z &\in \mathbb{S}^n_+ & ext{dual feasability} \ ext{tr}(X^T Z) &= 0 & ext{complementarity} \end{aligned}$$

(barrier): $XZ = \rho I$, (like SOCP $x \circ z = \rho e$)

$$(\text{SDP-KKT})_{\rho} \begin{bmatrix} C - A^*(y) - Z \\ A(X) - b \\ XZ - \rho I \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- (factorize/pivot?): Unlike Arw(x), rank(X) unknown
- (question): How to solve large (SDP) with (possibly) low-rank X*?

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000 0000
A Subspace Method			

SDP subspace method [WW]

Goal: Find "optimal" k-dimensional subspace \mathcal{V}

- $\mathcal{V}_k^* := \operatorname{span}\{v_1, \ldots, v_k\}, k \text{ largest eigenvalues of } X^*$
- Optimize over smallest space possible

Key observation:

$$> X^*, Z^* \succeq 0, \langle X, Z \rangle = 0 \implies \operatorname{ran}(X) \perp \operatorname{ran}(Z) = \operatorname{ran}(C - A^*(y))$$

Iteration-wise goals:

- Want $\mathcal{V}_k \to \mathcal{V}_k^*$
- ► \mathcal{V}^+ : find $\lambda(C A^*(y)) << 0$ and toss $\lambda(C A^*(y)) > 0$

▶ y⁺: cheap update (i.e., smallest subspace SDP solve)

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000 0000
A Subspace Method			

SDP subspace method [WW]

Algorithm

- 1. Initialize: dual variable y_0 , \mathcal{V} subspace of \mathbb{R}^n
- 2. For iter = 1 : iter_max
 - Set V⁺ = minimal/nonpositive eigenvectors of (C − A^{*}(y))
 - Toss any $v_i \in V$ with $v_i^T (C A^*(y)) v_i >> 0$
 - ▶ Set V = orth[V, V⁺]
 - Build subspace problem: $A_i^{\mathcal{V}} = V^T A_i V$, $C^{\mathcal{V}} = V^T C V$
 - Solve tiny SDP: [X, y] =SDP solver $(A^{\mathcal{V}}, b, C^{\mathcal{V}})$
 - Test for convergence

	LPs and Conic Duality	SOCPs	SDPs
0000 00 0	00 00000000 0000	000 00000000 000	000 0000
A Subspace Method			

SDP subspace method [WW]

SDP_subspace_test(2000, 5, 'subspace')
Current method:

- Not tossing bad v_i's
- Not using subspace method for $y \in \mathbb{R}^m$
- Using fixed dimesion update for V⁺

Only known reference (I could find): Olivera, 2002

- Only rank 1 updates
- no theoretical results
- no X basis finesse

	LPs and Conic Duality	SOCPs	SDPs
00	0000000	000000000	0000
	0000	000	

A Subspace Method

Thank you!!