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Intro to Conic Duality

SDP_subspace_test(2000, 5, ’sedumi’)

min
X
〈C,X〉

(SDP-P) s.t. A(X) = b
x ∈ Sn

+

〈C,X〉 = tr(CT X) A(X) :=

 〈Ai ,X〉
...

〈Am,X〉


Sn
+: positive semidefinite matrices

Ai ∈ S2000
+ for i = 1, . . . 5

C ∈ S2000
+

All dense
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Intro to Conic Duality

Conic duality

Recall the primal and dual linear programs

min
x

cT x max
y ,z

bT y

(LP-P) s.t. Ax = b (LP-D) s.t. c − AT y = z
x ≥ 0 z ≥ 0

Question: How can we generalize the inequality x ≥ 0 and preserve

I symmetry (x ≥ 0 and z ≥ 0)?

I barrier properties (interior point tools)?
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Intro to Conic Duality

Intro to conic duality

Definition
A set K ⊆ Rn is a cone if for all x ∈ K and α ≥ 0, we have αx ∈ K.

Definition
A cone K is proper if it is closed, pointed (K ∩−K = {0}), and
nonempty (K + (−K) = Rn).

Examples

1) K = R+ = {x ∈ Rn | x ≥ 0}
2) K = K2 = {x = (x0, x̄) ∈ R× Rn−1 | ||x̄ || ≤ x0, x0 ≥ 0} (draw!)

AKA the Lorentz cone, or “ice cream cone”

3) K = Sn
+ = {X ∈ Rn×n | X � 0}
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Intro to Conic Duality

Intro to conic duality

Definition
Given a cone K ⊂ Rn, the dual cone of K is the set

K∗ = {y | xT y ≥ 0 for all x ∈ K}

Examples

1) K = R+ =⇒ K∗ = K
2) K = K2 =⇒ K∗ = K
3) K = Sn

+ =⇒ K∗ = K

Self-dual cones: primal-dual symmetry, great for optimization methods.
Theorem: Every real, self-dual cone is a Cartesian product of R+,K2,
and Sn

+.
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Conic Duals

Conic primal and dual

Let K be a cone in Rn, A(·) a linear operator, and 〈·, ·〉 an inner
product.

min
x
〈c, x〉 max

y ,z
bT y

(CP-P) s.t. A(x) = b (CP-D) s.t. c − A∗(y) = z
x ∈ K z ∈ K∗

Conic duality includes:

I (LP) linear programming

I (SOCP) second-order cone programming

I (SDP) semidefinite programming
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Conic Duals

Second-order cone and semidefinite programming

min
x

cT x max
y ,z

bT y

(SOCP-P) s.t. Ax = b (SOCP-D) s.t. c − AT y = z
x ∈ K2 z ∈ K2

min
X
〈C,X〉 max

y ,Z
bT y

(SDP-P) s.t. A(X) = b (SDP-D) s.t. C − A∗(y) = Z
X ∈ Sn

+ Z ∈ Sn
+

(LP) ⊂ (SOCP) ⊂ (SDP) ⊂ (CP) ⊂ convex optimization
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Introduction

Talk Outline

1. Introduction
2. Linear programming and conic duality

I Lagrangian, finding duals
I Conic duality theorem

3. Second-order cone programming
I Jordan algebra, KKT conditions
I Barrier method, interior point
I ADMM, 1st order projection method

4. Semidefinite programming
I KKT conditions
I New(-ish) subspace method
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Intro

Recall the (LP) primal and dual

min
x

cT x max
y ,z

bT y

(LP-P) s.t. Ax = b (LP-D) s.t. c − AT y = z
x ≥ 0 z ≥ 0
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Intro

Duality

min
x

cT x min
x
〈c, x〉

(LP-P) s.t. Ax = b (CP-P) s.t. A(x) = b
x ≥ 0 x ∈ K

Questions:
I How to find the dual of (dualize) (LP), (CP)? (A: Lagrangian.)

I How do primal and dual feasibility/solvability inform each other?

I Can primal-dual be solved simultaneously? (A: Yes.)

I Why? How? (A: Cone symmetry.)

I Is this advantageous? (A: Yes!)
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LP Duality

The Lagrangian

min
x

cT x

(LP-P) s.t. Ax = b
x ≥ 0

Definition
Given the primal linear program (LP-P), the Lagrangian is

L(x , y , z) = cT x − yT (Ax − b)− xT z

where y is the multiplier (dual variable) for Ax = b, and z is the
multiplier for x .

I Frame primal and dual problems.
I Prove duality results, develop algorithms.
I Show necessary and sufficient conditions for solutions (KKT

systems). 11 / 40
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LP Duality

(LP) duality via the Lagrangian

L(x , y , z) = cT x − yT (Ax − b)− xT z

Claim: (LP-P) = min
x

max
y ,z
z≥0

L(x , y , z) and (LP-D) = max
y ,z

min
x≥0

L(x , y , z)

Define dual function g(x) = max
y ,z
z≥0

L(x , y , z)

Ax 6= b =⇒ g(x) = +∞
=⇒ Ax = b
=⇒ min

x
g(x) = min

x
Ax=b

max
z≥0

cT x − xT z
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LP Duality

(LP) duality via the Lagrangian

L(x , y , z) = cT x − yT (Ax − b)− xT z

Claim: (LP-P) = min
x

max
y ,z
z≥0

L(x , y , z) and (LP-D) = max
y ,z

min
x≥0

L(x , y , z)

Define dual function g(x) = max
y ,z
z≥0

L(x , y , z)

Any xi < 0 =⇒ g(x) = +∞
=⇒ x ≥ 0

Any xizi > 0 =⇒ inner max not attained
=⇒ min

x≥0
Ax=b

max
z

cT x − xT z = min
x≥0

Ax=b

cT x

Same idea gives (LP-D) = max
y ,z

min
x≥0

L(x , y , z)

12 / 40



Introduction LPs and Conic Duality SOCPs SDPs

LP Duality

Interpretation of Lagrange multipliers

L(x , y , z) = cT x − yT (Ax − b)− xT z

(LP-P) min
x

max
y ,z
z≥0

L(x , y , z) (LP-D) max
y ,z

min
x≥0

L(x , y , z)

I Inner max
yi
−yi(aT

i x − bi): “soft” penalty on aT
i x − bi 6= 0.

I Pointwise infimum implies dual problem is concave even if primal
is not convex.
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LP Duality

Theorem (LP Duality)
Let Rn

+ be the nonnegative orthant in Rn with the primal-dual pair

min
x

cT x max
y ,z

bT y

(LP-P) s.t. Ax = b (LP-D) s.t. c − AT y = z
x ∈ Rn

+ z ∈ Rn
+

1) (duality symmetry): The dual to (LP-D) is (LP-P).

2) (weak duality): If x is primal feasible and (y , z) are dual feasible,
then bT y ≤ cT x.
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LP Duality

Theorem (LP Duality)
Let Rn

+ be the nonnegative orthant in Rn with the primal-dual pair

min
x

cT x max
y ,z

bT y

(LP-P) s.t. Ax = b (LP-D) s.t. c − AT y = z
x ∈ Rn

+ z ∈ Rn
+

3) The following are equivalent:
i) (LP-P) is feasible and bounded below.
ii) (LP-D) is feasible and bounded above.
iii) (LP-P) is solvable.
iv) (LP-D) is solvable.
v) Both (LP-P) and (LP-D) are feasible.

Key: 2) and 3) give optimality conditions.
Ax = b, c − AT y = z, x , z ∈ Rn

+ and xT z = 0

=⇒ (x , y , z) = (x∗, y∗, z∗) 14 / 40
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LP Duality

KKT conditions for LPs
Definition
The following are the Karush-Kuhn-Tucker (KKT) optimality conditions
for (LP)

Ax = b primal feasability
x ≥ 0 primal feasability

c − AT y = z dual feasability
z ≥ 0 dual feasability

xT z = 0 complementarity

I linear (easy) constraints: Ax = b, c − AT = z
I nonlinear (hard) constraints: x , z ≥ 0, xT z = 0

Coordinate-wise handling of x , z ≥ 0: Simplex method.
Interior point: Smooth nonlinear constraints with twice-diff’able penalty.
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LP Duality

KKT conditions for LPs
Definition
The following are the Karush-Kuhn-Tucker (KKT) optimality conditions
for (LP)

Ax = b primal feasability
x ≥ 0 primal feasability

c − AT y = z dual feasability
z ≥ 0 dual feasability

xT z = 0 complementarity

I linear (easy) constraints: Ax = b, c − AT = z
I nonlinear (hard) constraints: x , z ≥ 0, xT z = 0

Question: What other classes of primal-dual pairs offer symmetric
duality, nice optimality (KKT) conditions, etc.?
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Conic Duality

General conic duality

Let K be a cone in Rn with the primal-dual pair

min
x
〈c, x〉 max

y ,z
bT y

(CP-P) s.t. A(x) = b (CP-D) s.t. c − A∗(y) = z
x ∈ K z ∈ K∗

Then we have the Lagrangian

L(x , y , z) = 〈c, x〉 − yT (A(x)− b)− 〈x , z〉

Recall K∗ = {y | xT y ≥ 0 for all x ∈ K}

(CP-P) min
x

max
y ,z

z∈K∗

L(x , y , z) (CP-D) max
y ,z

min
x∈K

L(x , y , z)
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Conic Duality

Theorem (Conic Duality)
Let K be a cone in Rn with the primal-dual pair

min
x
〈c, x〉 max

y ,z
bT y

(CP-P) s.t. A(x) = b (CP-D) s.t. c − A∗(y) = z
x ∈ K z ∈ K∗

1) (duality symmetry): (CP-D) is conic, and the dual to (CP-D) is
(CP-P).

2) (weak duality): If x is primal feasible and (y , z) are dual feasible,
then bT y ≤ 〈c, x〉.
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Conic Duality

Theorem (Conic Duality)
Let K be a cone in Rn with the primal-dual pair

min
x
〈c, x〉 max

y ,z
bT y

(CP-P) s.t. A(x) = b (CP-D) s.t. c − A∗(y) = z
x ∈ K z ∈ K∗

3) (strong duality with Slater condition): If (CP-P) is bounded below
and strictly feasible (∃x with A(x) = b and x ∈ int(K)) then
(CP-D) is solvable with zero duality gap (and vice versa).

4) If (CP-P) is bounded below and strictly feasible, then x is (CP-P)
optimal and (y , z) are (CP-D) optimal if and only if both hold
a) (zero duality gap): bT y = 〈c, x〉, and
b) (comlementary slackness): 〈x , z〉 = 0.
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Conic Duality

Symmetric cone duals

min
x
〈c, x〉 max

y ,z
bT y

(CP-P) s.t. A(x) = b (CP-D) s.t. c − A∗(y) = z
x ∈ K z ∈ K∗

Goals:

I Apply conic duality results to symmetric cones:
K = K2, K = Sn

+?

I Utilize cone symmetry (K∗ = K) in solver methods.
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Intro to SOCP

The second-order cone program (SOCP)

min
x

cT x max
y ,z

bT y

(SOCP-P) s.t. Ax = b (SOCP-D) s.t. c − AT y = z
x ∈ K2 z ∈ K2

Recall K2 = {x = (x0, x̄) ∈ R× Rn−1 | ||x̄ || ≤ x0, x0 ≥ 0}
x ∈ K2 handles general quadratic constraints:

Examples

1) ||Aix + bi || ≤ cT
i x + di ⇐⇒

(
Ai

cT
i

)
x +

(
bi

di

)
∈ K2

2) xT Qix + bT
i x + ci ≤ 0 ⇐⇒∥∥∥∥(1 + bT

i x + ci)/2√
Qix

∥∥∥∥ ≤ (1− bT
i x − ci)/2
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Intro to SOCP

Application

I filter design

I antenna array weight design

I truss design

I robust estimation

I model predictive control
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Intro to SOCP

KKT conditions for SOCPs

Ax = b primal feasability
x ∈ K2 primal feasability

c − AT y = z dual feasability
z ∈ K2 dual feasability

xT z = 0 complementarity

Question: How to handle nonsmooth x , z ∈ K2, xT z = 0
Answers:

I Jordan algebra with smooth product x ◦ z
→ Barrier/penalty problem and interior point method

I Projection equivalence:
x , z ∈ K2 and xT z = 0 ⇐⇒ ΠK(x − z) = x
→ 1st-order problem and ADMM/projection method
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SOCPs: Jordan Algebra and Interior Point

Jordan algebra of the second-order cone

Definition
Given x = (x0, x̄), z = (z0, z̄) ∈ R× Rn−1, the Jordan product is

x ◦ z =

(
xT z

x0z̄ + z0x̄

)
= Arw(x)z, with Arw(x) :=

[
x0 x̄T

x̄ x0I

]

Basic Properties:

I (product identity): e = (1, 0), x ◦ e = (x0, x̄)

I (commutative): x ◦ z = z ◦ x

I (bilinear): linear in x for fixed z and vice versa

I (non-associative): x ◦ (y ◦ z) 6= (x ◦ y) ◦ z in general

I (Jordan associative): x2 ◦ (z ◦ x) = (x2 ◦ z) ◦ x
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SOCPs: Jordan Algebra and Interior Point

SOC spectral decomposition

x ◦ z =

(
xT z

x0z̄ + z0x̄

)
= Arw(x)z Arw(x) :=

[
x0 x̄T

x̄ x0I

]
Jordan product ◦ induces spectral decomposition of K2 (like Sn

+)

λ1,2 = x0 ∓ ||x̄ ||, v1,2 = 1
2

(
1
∓v̄

)
s.t.
{ v̄ = x̄/||x̄ || x̄ 6= 0

v̄ any unit vector x̄ = 0

Properties: For all x ∈ K2,
I x = λ1v1 + λ2v2, with λi ≥ 0 and vT

1 v2 = 0,
(hence notation x �K2 0)

I x ∈ int(K2) ⇐⇒ λi > 0, (leads to barrier notion)
I tr(x) = λ1 + λ2, det(x) = λ1λ2 = x2

0 − ||x̄ ||2
I x−1 := λ−1

1 v1 + λ−1
2 v2, (x−1 ◦ x = e)

I x1/2 := λ
1/2
1 v1 + λ

1/2
2 v2, (x1/2 ◦ x1/2 = x)
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SOCPs: Jordan Algebra and Interior Point

Jordan product and complementarity condition

Goal: Handle x , z ∈ K2 and xT z = 0 “smoothly”.

The following are equivalent:

i) x , z ∈ K2 and xT z = 0

ii) x , z ∈ K2 and x ◦ z = 0

(Proof by picture!)
Great news: Swapping xT z = 0 for x ◦ z = 0 gives

1. twice-differentiable term x ◦ z (for x , z ∈ int(K2))

2. n constraints, square Newton system

24 / 40



Introduction LPs and Conic Duality SOCPs SDPs

SOCPs: Jordan Algebra and Interior Point

Log barrier: φK(x) := −
d∑

i=1
logλi , dom(φK) = int(K)
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SOCPs: Jordan Algebra and Interior Point

SOC log barrier

Log barrier: φK(x) := −
d∑

i=1
logλi = − log(x2

0 − ‖x̄‖2)

∇φK(x) = −x−1 = −(λ−1
1 v1 + λ−1

2 v2)
∇2φK(x) = Q(x)−1 = Q(x−1)
(Q(x) := 2Arw2(x)− Arw(x2) = (2xxT − (xT Jx)J))
Note, (x , z) complementary if and only if one of the following holds:

I x = 0, z ∈ int(K2)

I z = 0, x ∈ int(K2)

I x , z ∈ ∂(K2)

Thus φK(x) or φK(z)→∞, as (x , z)→ (x∗, z∗)
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SOCPs: Jordan Algebra and Interior Point

SOC central path

min
x

cT x + ρφ(x)

(SOCP-P)ρ s.t. Ax = b
x ∈ K2

(central path): {(x(ρ), y(ρ), z(ρ) | ρ > 0)}
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SOCPs: Jordan Algebra and Interior Point

SOC central path

min
x

cT x + ρφ(x)

(SOCP-P)ρ s.t. Ax = b
x ∈ K2

Question: How to build a nice Newton system?
Ans: Penalize dual z instead.
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SOCPs: Jordan Algebra and Interior Point

Barrier KKT conditions and Newton system

Lρ(x , y , z) = cT x − yT (Ax − b)− xT z − ρφ(z)

∇zLρ = −x + ρz−1 = 0 ⇐⇒ x ◦ z = ρe

(SOCP-KKT)ρ

 c − AT y − z
Ax − b

Arw(x)z − ρe

 =

0
0
0


w+ = (x+, y+, z+) = (x + ∆x , y + ∆y , z + ∆z), M = ∇2Lρ(w)

M∆w =

 0 AT I
A 0 0

Arw(z) 0 Arw(x)

∆x
∆y
∆z

 =

 c − AT y − z
b − Ax

ρe − Arw(x)z

 =

rx

ry

rz
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SOCPs: Jordan Algebra and Interior Point

Barrier KKT conditions and Newton system

 0 AT I
A 0 0

Arw(z) 0 Arw(x)

∆x
∆y
∆z

 =

rx

ry

rz


I (iteration): Generally just take one Newton step per ρ

I (factorize and pivot): Arw(x) sparse

I (conditioning): cond(M) ∼ cond(Arw(x))

I (convergence): Residuals ≈ O(
√
εmach) = 10−8

Question: How to handle large problems? (n >> 1, 000)
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SOCPs: A First-Order Method

ADMM: alternating direction method of multipliers

min f (x) + g(z)
s.t. Ax + Bz = c

Question: How to apply to KKT conditions on SOCP?

Ax = b primal feasability
x ∈ K2 primal feasability

c − AT y = z dual feasability
z ∈ K2 dual feasability

xT z = 0 complementarity

(hint): x , z ∈ K2 and xT z = 0 ⇐⇒ ΠK(x − z) = x
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SOCPs: A First-Order Method

ADMM applied to SOCP
Homogeneous embedding of SOCP (self-dual form), Qu = v

v :=

z
0
κ

 =

 0 AT c
−A 0 b
−cT −bT 0

x
y
τ

 =: Qu

I (original variables): (x̂ , ŷ , ẑ) = (x/τ, y/τ, z/τ)

I (τ, κ) = (1, 0) recovers standard primal-dual
I (τ, κ) act as primal-dual feasibility certificates

C := K × Rn × R+, C∗ = K × {0}n × R+

(indicator): δS(x) :=
{ 0 if x ∈ S

+∞ else

min δC×C∗(u, v) + δQũ=ṽ (ũ, ṽ)
s.t. (u, v) = (ũ, ṽ)
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SOCPs: A First-Order Method

ADMM applied to SOCP

min δC×C∗(u, v) + δQũ=ṽ (ũ, ṽ)
s.t. (u, v) = (ũ, ṽ)

(λ, µ): dual multipliers from ADMM

(ũ+, ṽ+) = ΠQu=v (u + λ, v + µ)
u+ = ΠC(ũ+ − λ)
v+ = Π∗C(ṽ+ − µ)
λ+ = λ− ũ+ + u+

µ+ = µ− ṽ+ + v+

I (implementation): Extremely easy, O(100) lines of code

I (main cost): Single initial factorization of M =

[
I AT

−A I

]
I (iterations): Very cheap, one backsolve and one projection
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SDPs

State Primal and Dual SDP

min
X
〈C,X〉 max

y ,Z
bT y

(SDP-P) s.t. A(X) = b (SDP-D) s.t. C − A∗(y) = Z
X ∈ Sn

+ Z ∈ Sn
+

〈C,X〉 = tr(CT X) A(X) :=

 〈Ai ,X〉
...

〈Am,X〉

 A∗(y) :=
m∑

i=1
yiAi
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SDPs

SDP Applications

I matrix recovery

I eigenvalue optimization

I anything with a linear matrix inequality (A0 +
m∑

i=1
yiAi � 0)
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SDPs

SDP KKT conditions

A(X) = b primal feasability
X ∈ Sn

+ primal feasability
c − A∗(y) = Z dual feasability

Z ∈ Sn
+ dual feasability

tr(X T Z ) = 0 complementarity

(barrier): XZ = ρI, (like SOCP x ◦ z = ρe)

(SDP-KKT)ρ

C − A∗(y)− Z
A(X)− b
XZ − ρI

 =

0
0
0


I (factorize/pivot?): Unlike Arw(x), rank(X) unknown

I (question): How to solve large (SDP) with (possibly) low-rank X∗?
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A Subspace Method

SDP subspace method [WW]

Goal: Find “optimal” k−dimensional subspace V
I V∗k := span{v1, . . . , vk}, k largest eigenvalues of X∗

I Optimize over smallest space possible

Key observation:

I X∗, Z ∗ � 0, 〈X , Z 〉 = 0
=⇒ ran(X) ⊥ ran(Z ) = ran(C − A∗(y))

Iteration-wise goals:

I Want Vk → V∗k
I V+: find λ(C − A∗(y)) << 0 and toss λ(C − A∗(y)) > 0

I y+: cheap update (i.e., smallest subspace SDP solve)
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A Subspace Method

SDP subspace method [WW]

Algorithm

1. Initialize: dual variable y0, V subspace of Rn

2. For iter = 1 : iter_max
I Set V+ = minimal/nonpositive eigenvectors of (C − A∗(y))
I Toss any vi ∈ V with vT

i (C − A∗(y))vi >> 0
I Set V = orth[V ,V+]
I Build subspace problem: AVi = V T AiV , CV = V T CV
I Solve tiny SDP: [X , y ] = SDP solver(AV , b,CV)
I Test for convergence
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A Subspace Method

SDP subspace method [WW]

SDP_subspace_test(2000, 5, ’subspace’)
Current method:

I Not tossing bad vi ’s

I Not using subspace method for y ∈ Rm

I Using fixed dimesion update for V+

Only known reference (I could find): Olivera, 2002

I Only rank 1 updates

I no theoretical results

I no X basis finesse
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A Subspace Method

Thank you!!
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