Problem 1. (a) For a function $f:(a, b) \rightarrow \mathbf{R}^{\mathbf{1}},(a, b)$ an open interval, state briefly but precisely:
i. What is meant by the statement: $f(x)$ is continuous at $x_{0} \in(a, b)$.
ii. What is meant by the statement: $f(x)$ is continuous on (a, b).
iii. What is meant by the statement: $f(x)$ is uniformly continuous on (a, b). (b) Prove, directly from the definition, that the function $f(x)=1 / x$ is uniformly continuous on the interval $[1, \infty)$.

Solution: Part (a) is just definitions. Part (b): Let $\epsilon>0$ be given. Let $\delta=\epsilon$. Let $x, y \in[1, \infty)$ s.t. $|x-y|<\delta$. Then

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{y-x}{x y}\right| \leq|y-x|<\epsilon
$$

Problem 2. Let $\left\{U_{n}\right\}_{n=1}^{\infty}$ be a nested sequence of open sets in a topological space X, so that $U_{1} \subset U_{2} \subset \cdots \subset U_{n} \subset U_{n+1}$. Let $x_{n} \in U_{n} \backslash U_{n-1}$. Set $U=\cup_{n=1}^{\infty} U_{n}$. Prove that $\left\{x_{n}\right\}$ does not have a subsequence that converges to a point in U.

Solution: Suppose $\left\{x_{n_{k}}\right\}$ converges to a point in U, say $x_{n_{k}} \rightarrow x$. Then $x \in U_{i}$ for some i, and given any neighborhood V of x, there exists N s.t. $\left\{x_{n_{k}}\right\} \in V, \forall n_{k} \geq N . U_{i}$ itself is a neighborhood of x since U_{i} is open. Therefore, there exists N such that $n_{k} \geq N \Rightarrow x_{n_{k}} \in U_{i}$. But for $n_{k}>i$, we have $x_{n_{k}} \in U_{n_{k}} \backslash U_{n_{k}-1} \subset U_{n_{k}} \backslash U_{i}$, so $x_{n_{k}} \notin U_{i}$. Therefore, there can be no convergent subsequence.

Problem 3. Let $T:(X, d) \rightarrow(X, d)$ be a contraction mapping from the metric space (X, d) to itself, so that for some $r<1, d(T x, T y) \leq r d(x, y) \forall x, y \in X$. Assume that x_{0} is a fixed point of this mapping. Prove that

$$
d\left(x, x_{0}\right) \leq \frac{d(x, T(x))}{1-r}
$$

Solution: Let T, x_{0} be as above. Then

$$
d\left(T^{n} x, T^{n} x_{0}\right)=d\left(T^{n} x, x_{0}\right) \leq r^{n} d\left(x, x_{0}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. So $T^{n} x \rightarrow x_{0}$. Then by the triangle inequality and taking the limit,

$$
\begin{aligned}
d\left(x, x_{0}\right) & \leq d(x, T x)+d\left(T x, T^{2} x\right)+d\left(T^{2} x, T^{3} x\right)+\cdots \\
& \leq d(x, T x)+r d(x, T x)+r^{2} d(x, T x)+\cdots \\
& =\left(1+r+r^{2}+\cdots\right) d(x, T x) \\
& =\frac{d(x, T x)}{1-r}
\end{aligned}
$$

Problem 4. Let y, y^{\prime} be two elements of a Hilbert space \mathcal{H}. Prove that if $\mathrm{i}, \mathrm{x}_{\mathrm{i}}=\mathrm{iy}^{\prime}, \mathrm{x}_{\mathrm{i}}$ for every $x \in \mathcal{H}$, then $y=y^{\prime}$.

Solution: If $\left.<y, x\rangle=<y^{\prime}, x\right\rangle \forall x \in \mathcal{H}$, then we have $\left.<y-y^{\prime}, x\right\rangle=0 \forall x \in \mathcal{H}$. Let $x=y-y^{\prime}$. Then $\left\|y-y^{\prime}\right\|^{2}=0 \Rightarrow y=y^{\prime}$.

Problem 5. Let L and R be the left shift operator and the right shift operator of $l^{2}(\mathbf{N})$ respectively. So

$$
\begin{gathered}
L\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{2}, x_{3}, x_{4}, \cdots\right) \\
R\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0, x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)
\end{gathered}
$$

Find the point spectrum of L and R.
Solution: The point spectrum of L is all λ such that $L-\lambda I$ is not 1-1. Suppose $L\left(x_{1}, x_{2}, \cdots\right)=\left(x_{2}, x_{3}, x_{4}, \cdots\right)=\lambda\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ for some λ. Then $\lambda x_{1}=$ $x_{2}, \lambda x_{2}=x_{3}$, etc. So we have: $\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{1}, \lambda x_{1}, \lambda^{2} x_{1}, \lambda^{3} x_{1}, \cdots\right)$. In order for this sequence to lie in $l^{2}(\mathbf{N})$, we need:

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}=\lambda^{-1} \sum_{n=1}^{\infty}\left|\lambda^{n} x_{1}\right|^{2}=\lambda^{-1} x_{1}^{2} \sum_{n=1}^{\infty}|\lambda|^{2 n}<\infty
$$

This is true iff $|\lambda|<1$. So the point spectrum of L is $\{\lambda:|\lambda|<1\}$.
Next, suppose $R\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0, x_{1}, x_{2}, x_{3}, \cdots\right)=\lambda\left(x_{1}, x_{2}, x_{3}, \cdots\right)$. Then $0=\lambda x_{1}$, and $x_{1}=\lambda x_{2}, x_{2}=\lambda x_{3}$, etc. If $\lambda \neq 0$, this implies $x_{1}=0 \Rightarrow x_{2}=$ $0 \Rightarrow x_{3}=0$ and so on. Therefore, R has no nonzero eigenvalues.

Problem 6. Define the following three sequences of functions $[0, \infty) \rightarrow \mathbf{R}$:

$$
\begin{gathered}
\left(f_{n}\right)_{n=1}^{\infty} \text { given by } f_{n}(x)=\left\{\begin{array}{cl}
\frac{n^{1 / 2}}{(x+1)^{n}}, & \text { if } 0 \leq x \leq n \\
0, & \text { else }
\end{array}\right. \\
\left(g_{n}\right)_{n=1}^{\infty} \text { given by } g_{n}(x)=\left\{\begin{array}{cl}
\sin (2 \pi n x), & \text { if } n \leq x \leq n+1 \\
0, & \text { else }
\end{array}\right. \\
\left(h_{n}\right)_{n=1}^{\infty} \text { given by } h_{n}(x)=\sum_{k=1}^{\infty} \frac{k}{\sqrt{n}} \operatorname{Ind}_{\left[k, k+\left(1 / n^{2}\right)\right]}(x) .
\end{gathered}
$$

Consider these sequences with each of the topologies given below and determine whether or not they converge and, if they converge, determine their limits. Explain your assertions.
a. Pointwise on $[0,+\infty)$.
b. Uniformly on $[0,+\infty)$.
c. In the norm topology of $L^{2}([0,+\infty))$.
d. Strongly in $L^{3 / 2}([0,+\infty))$.
e. Weakly in $L^{3 / 2}([0,+\infty))$.

Solution: (Note: the solutions in this part should be taken with a nice big grain of salt.)
a) Let $x \in(0, \infty)$ be fixed. Then eventually $n \geq x$, so $f_{n}(x)=\frac{n^{1 / 2}}{(x+1)^{n}} \rightarrow 0$ since $(x+1)>1$, making the denominator blow up very fast (faster than the numerator, for sure). At $x=0, f_{n}(0)=\frac{n^{1 / 2}}{1^{n}}=n^{1 / 2} \rightarrow \infty$. So f_{n} do not converge pointwise.
For g_{n}, if x is fixed, eventually we will have $x<n$, in which case $g_{n}(x)=0$, so g_{n} converges to 0 pointwise.
What about h_{n} ? Suppose first that $x \in \mathbf{N}$. Then for $n>x$, we have $h_{n}(x)=\frac{x}{\sqrt{n}} \rightarrow 0$. If $x \notin \mathbf{N}$, then $\exists N$ s.t. $n \geq N \Rightarrow x \notin\left[\lfloor x\rfloor,\lfloor x\rfloor+\frac{1}{n^{2}}\right]$ (where $\lfloor x\rfloor=$ floor of x). Therefore, $h_{n}(x)=0$ for $n>N$. So $h_{n} \rightarrow 0$ pointwise for all x.
b) The functions f_{n} can't converge uniformly because they don't converge pointwise. The g_{n} also do not converge uniformly, for given any n, letting $x=n+\frac{1}{4}$ gives $g_{n}(x)=\sin \left(2 \pi\left(n^{2}+\frac{n}{4}\right)=1\right.$. The h_{n} also do not converge uniformly, since for any n, letting $x=n$ gives that $h_{n}(x)=\sqrt{n}$.
c) In the norm topology of L^{2}, we have:

$$
\begin{gathered}
\left\|f_{n}\right\|_{L^{2}}=\int_{0}^{\infty}\left|f_{n}(x)\right|^{2} d x=\int_{0}^{n}\left|f_{n}(x)\right|^{2} d x+\int_{n}^{\infty}\left|f_{n}(x)\right|^{2} d x=\int_{0}^{n} \frac{n}{(x+1)^{2 n}} d x \rightarrow 0 \\
\left\|g_{n}\right\|_{L^{2}}=\int_{n}^{n+1}|\sin (2 \pi n x)|^{2} d x>1 \text { always, so the } g_{n} \text { do not converge in } L^{2}
\end{gathered}
$$

With the h_{n}, by drawing the graph of $\left|h_{n}(x)\right|^{2}$ one can see that:

$$
\int_{0}^{\infty}\left|h_{n}(x)\right|^{2} d x=\frac{1}{n} \frac{1}{n^{2}}+\frac{2^{2}}{n} \frac{1}{n^{2}}+\cdots+\frac{n^{2}}{n} \frac{1}{n^{2}}=\frac{n(n+1)(2 n+1)}{6} \frac{1}{n^{2}} \rightarrow \infty
$$

So h_{n} does not converge in L^{2}.
d) In $L^{3 / 2}$, we have:

$$
\begin{gathered}
\left\|f_{n}\right\|_{L^{3 / 2}}=\int_{0}^{\infty}\left|f_{n}(x)\right|^{3 / 2} d x=\int_{0}^{n}\left|f_{n}(x)\right|^{3 / 2} d x=\int_{0}^{n} \frac{n^{3 / 2}}{(x+1)^{3 n / 2}} d x \rightarrow 0 . \\
\left\|g_{n}\right\|_{L^{3 / 2}}=\int_{n}^{n+1}|\sin (2 \pi n x)|^{3 / 2} d x>1 \\
\left\|h_{n}\right\|_{L^{3 / 2}}=\frac{1^{3 / 2}}{n^{3 / 4}} \frac{1}{n^{2}}+\frac{2^{3 / 2}}{n^{3 / 4}} \frac{1}{n^{2}}+\cdots+\frac{n^{3 / 2}}{n^{3 / 4}} \frac{1}{n^{2}}=\frac{1+2^{3 / 2}+\cdots+n^{3 / 2}}{n^{11 / 4}} \leq \frac{n n^{3 / 2}}{n^{11 / 4}}=\frac{1}{n^{1 / 4}} \rightarrow 0
\end{gathered}
$$

so h_{n} converges strongly in $L^{3 / 2}$.
e) Weakly in $L^{3 / 2}$. Let $r \in L^{3}$ (since $\frac{1}{3 / 2}+\frac{1}{3}=1$) so $\int|r|^{3}<\infty$. Then we need $\int_{0}^{\infty} f_{n} r \rightarrow 0 . \int_{0}^{\infty} f_{n} r \leq\left\|f_{n}\right\|_{L^{3 / 2}}\|r\|_{L^{3}} \rightarrow 0$ by Hölder. (alternatively, just say strong \Rightarrow weak?)
Next, $\int g_{n} r=\int_{n}^{n+1} r(x) \sin (2 \pi n x) d x \leq \int_{n}^{n+1} r(x) \rightarrow 0$, so g_{n} converges weakly. Finally, since the h_{n} converge strongly, they also converge weakly.

