
Problem 1. (a) For a function f : (a, b) → R1, (a, b) an open interval, state
briefly but precisely:

i. What is meant by the statement: f(x) is continuous at x0 ∈ (a, b).

ii. What is meant by the statement: f(x) is continuous on (a, b).

iii. What is meant by the statement: f(x) is uniformly continuous on (a, b).
(b) Prove, directly from the definition, that the function f(x) = 1/x is
uniformly continuous on the interval [1,∞).

Solution: Part (a) is just definitions. Part (b): Let ε > 0 be given. Let δ = ε.
Let x, y ∈ [1,∞) s.t. |x− y| < δ. Then

|f(x)− f(y)| = | 1
x
− 1

y
| = |y − x

xy
| ≤ |y − x| < ε.

Problem 2. Let {Un}∞n=1 be a nested sequence of open sets in a topologi-
cal space X, so that U1 ⊂ U2 ⊂ · · · ⊂ Un ⊂ Un+1. Let xn ∈ Un\Un−1. Set
U = ∪∞n=1Un. Prove that {xn} does not have a subsequence that converges to
a point in U .

Solution: Suppose {xnk
} converges to a point in U , say xnk

→ x. Then
x ∈ Ui for some i, and given any neighborhood V of x, there exists N s.t.
{xnk

} ∈ V , ∀nk ≥ N . Ui itself is a neighborhood of x since Ui is open. There-
fore, there exists N such that nk ≥ N ⇒ xnk

∈ Ui. But for nk > i, we have
xnk

∈ Unk
\Unk−1 ⊂ Unk

\Ui, so xnk
/∈ Ui. Therefore, there can be no conver-

gent subsequence.

Problem 3. Let T : (X, d) → (X, d) be a contraction mapping from the metric
space (X, d) to itself, so that for some r < 1, d(Tx, Ty) ≤ rd(x, y) ∀x, y ∈ X.
Assume that x0 is a fixed point of this mapping. Prove that

d(x, x0) ≤
d(x, T (x))

1− r

Solution: Let T , x0 be as above. Then

d(Tnx, Tnx0) = d(Tnx, x0) ≤ rnd(x, x0) → 0

as n →∞. So Tnx → x0. Then by the triangle inequality and taking the limit,

d(x, x0) ≤ d(x, Tx) + d(Tx, T 2x) + d(T 2x, T 3x) + · · ·
≤ d(x, Tx) + rd(x, Tx) + r2d(x, Tx) + · · ·
= (1 + r + r2 + · · ·)d(x, Tx)

=
d(x, Tx)

1− r
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Problem 4. Let y, y′ be two elements of a Hilbert space H. Prove that if
¡y,x¿ = ¡y’,x¿ for every x ∈ H, then y = y′.

Solution: If < y, x >=< y′, x > ∀ x ∈ H, then we have < y−y′, x >= 0∀ x ∈ H.
Let x = y − y′. Then ||y − y′||2 = 0 ⇒ y = y′.

Problem 5. Let L and R be the left shift operator and the right shift oper-
ator of l2(N) respectively. So

L(x1, x2, x3, · · ·) = (x2, x3, x4, · · ·)

R(x1, x2, x3, · · ·) = (0, x1, x2, x3, x4, · · ·)

Find the point spectrum of L and R.

Solution: The point spectrum of L is all λ such that L − λI is not 1-1. Sup-
pose L(x1, x2, · · ·) = (x2, x3, x4, · · ·) = λ(x1, x2, x3, · · ·) for some λ. Then λx1 =
x2, λx2 = x3, etc. So we have: (x1, x2, x3, · · ·) = (x1, λx1, λ

2x1, λ
3x1, · · ·). In

order for this sequence to lie in l2(N), we need:

∞∑
n=1

|xn|2 = λ−1
∞∑

n=1

|λnx1|2 = λ−1x2
1

∞∑
n=1

|λ|2n < ∞

This is true iff |λ| < 1. So the point spectrum of L is {λ : |λ| < 1}.
Next, suppose R(x1, x2, x3, · · ·) = (0, x1, x2, x3, · · ·) = λ(x1, x2, x3, · · ·). Then
0 = λx1, and x1 = λx2, x2 = λx3, etc. If λ 6= 0, this implies x1 = 0 ⇒ x2 =
0 ⇒ x3 = 0 and so on. Therefore, R has no nonzero eigenvalues.

Problem 6. Define the following three sequences of functions [0,∞) → R:

(fn)∞n=1 given by fn(x) =

{
n1/2

(x+1)n , if 0 ≤ x ≤ n

0, else

(gn)∞n=1 given by gn(x) =
{

sin(2πnx), if n ≤ x ≤ n + 1
0, else

(hn)∞n=1 given by hn(x) =
∞∑

k=1

k√
n

Ind[k,k+(1/n2)](x).

Consider these sequences with each of the topologies given below and determine
whether or not they converge and, if they converge, determine their limits. Ex-
plain your assertions.
a. Pointwise on [0,+∞).
b. Uniformly on [0,+∞).
c. In the norm topology of L2([0,+∞)).
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d. Strongly in L3/2([0,+∞)).
e. Weakly in L3/2([0,+∞)).

Solution: (Note: the solutions in this part should be taken with a nice big
grain of salt.)
a) Let x ∈ (0,∞) be fixed. Then eventually n ≥ x, so fn(x) = n1/2

(x+1)n → 0
since (x + 1) > 1, making the denominator blow up very fast (faster than the
numerator, for sure). At x = 0, fn(0) = n1/2

1n = n1/2 → ∞. So fn do not
converge pointwise.
For gn, if x is fixed, eventually we will have x < n, in which case gn(x) = 0, so
gn converges to 0 pointwise.
What about hn? Suppose first that x ∈ N. Then for n > x, we have
hn(x) = x√

n
→ 0. If x /∈ N, then ∃N s.t. n ≥ N ⇒ x /∈ [bxc, bxc + 1

n2 ]
(where bxc = floor of x). Therefore, hn(x) = 0 for n > N . So hn → 0 pointwise
for all x.

b) The functions fn can’t converge uniformly because they don’t converge point-
wise. The gn also do not converge uniformly, for given any n, letting x = n + 1

4
gives gn(x) = sin(2π(n2 + n

4 ) = 1. The hn also do not converge uniformly, since
for any n, letting x = n gives that hn(x) =

√
n.

c) In the norm topology of L2, we have:

||fn||L2 =
∫ ∞

0

|fn(x)|2dx =
∫ n

0

|fn(x)|2dx+
∫ ∞

n

|fn(x)|2dx =
∫ n

0

n

(x + 1)2n
dx → 0.

||gn||L2 =
∫ n+1

n
| sin(2πnx)|2dx > 1 always, so the gn do not converge in L2.

With the hn, by drawing the graph of |hn(x)|2 one can see that:∫ ∞

0

|hn(x)|2dx =
1
n

1
n2

+
22

n

1
n2

+ · · ·+ n2

n

1
n2

=
n(n + 1)(2n + 1)

6
1
n2

→∞

So hn does not converge in L2.

d) In L3/2, we have:

||fn||L3/2 =
∫ ∞

0

|fn(x)|3/2dx =
∫ n

0

|fn(x)|3/2dx =
∫ n

0

n3/2

(x + 1)3n/2
dx → 0.

||gn||L3/2 =
∫ n+1

n

| sin(2πnx)|3/2dx > 1

||hn||L3/2 =
13/2

n3/4

1
n2

+
23/2

n3/4

1
n2

+· · ·+n3/2

n3/4

1
n2

=
1 + 23/2 + · · ·+ n3/2

n11/4
≤ nn3/2

n11/4
=

1
n1/4

→ 0
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so hn converges strongly in L3/2.

e) Weakly in L3/2. Let r ∈ L3 (since 1
3/2 + 1

3 = 1) so
∫
|r|3 < ∞. Then

we need
∫∞
0

fnr → 0.
∫∞
0

fnr ≤ ||fn||L3/2 ||r||L3 → 0 by Hölder. (alternatively,
just say strong ⇒ weak?)
Next,

∫
gnr =

∫ n+1

n
r(x) sin(2πnx)dx ≤

∫ n+1

n
r(x) → 0, so gn converges weakly.

Finally, since the hn converge strongly, they also converge weakly.
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